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SUMMARY:  
There are two methods to model the lateral load response of slab-column frames; Effective Beam Width Method 
(EBWM) (Han et al. 2009) and Equivalent Frame Model (EFM) (Park et al. 2009,). Different researchers 
calibrate their model derived from experiments using one of these two methods. Also, current design codes (ACI 
318-08, Eurocode 2-2004) permit the EFM for the analysis of two-way slab systems under gravity loads, as well 
as lateral loads such as seismic loads. This study shows that both the “EBWM” and “EFM” models are not 
appropriate in accurately predicting the response of slab-column frame systems under lateral loads. An artificial 
neural network limit state model for the drift ratio is developed for the first time to the analysis of slab-column 
connections under cyclic loading. 
 
Keywords: Slab-column connection, punching shear failure, Artificial Neural Network, analytical modelling.   
 
 
1. INTRODUCTION 
 
Equivalent frame model (EFM) and the effective beam width model (EBWM) are often used to 
analyze the flat slab structures. EBWM is useful in modeling the flat slabs under lateral loads where 
the flat slab is actually modeled as an effective beam having the same depth as the slab and an 
effective beam width (effective width factor×slab width). Propagation of further cracks in the slabs is 
observed as the level of applied moments due to later loads increased. Hence, the analysis of flat slab 
structures should take the reduction in slab stiffness into account as this is entirely due to the effect of 
cracks. Different suggested stiffness reduction factor can be found in the literature (Hwang and 
Moehle, 2000; Luo and Durrani, 1994). However, using a recommended constant stiffness reduction 
factor (e.g.  =1/3, recommended by Vanderbilt and Corley, 1983) results in overestimating the 
lateral drifts and slab moments of the structure. Hence, the overall aim is to develop a robust model 
capable of incorporating important response features of slab column connections. In this paper, a limit 
state model, initially developed by Elwood (2003), further adopted by Kang (2004), is used to model 
the punching shear of slab column connection. For this purpose, an artificial neural network limit state 
model is developed for the first time to predict the drift ratio at punching failure. Slabs (referred here 
as slab S1 and S4) from experiments reported by Derogar et al., 2007 are adopted to use in the 
analytical modeling.  
 
This paper also aims to assess the lateral stiffness of the slab-column connection using effective beams 
width model. This is achieved by applying the  ,  values available in the literature (Pecknold, 1975; 
Allen et al., 1977; FEMA 274 and ASCE/SEI 41) to the slab-column connection model. Suggested 
values of  , are used to calculate the bending stiffness of the “slab” beams in the analytical non-
linear model. The experiments reported by Derogar et al., 2007are used to compare to the analytical 
results in this paper. The modeled slab configuration and the modeled slab test setup are shown in Fig. 
1.1 (a) and (b) respectively. 
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Figure 1.1 The Modelled slab configuration (b) The modelled slab test setup (Derogar et al. 2007) 

 
 
2. LATERAL-LOAD STIFNESS USING EFFECTIVE SLABWIDTH MODEL 
 
An analytical model for test specimen S2 was created to compare the response from analytical model 
with response obtained during the test. Response of test specimen for approximately the first 10 cycles 
was effectively within the elastic range of the test specimen. For this reason, the first 10 cycles of the 
response was compared with the analytical model to determine appropriate α- and β-factors for the 
effective slab width model. The structure was modeled using the OpenSees platform (2007) as a plane 
frame as shown in Fig. 2.1.  
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Figure 2.1 Plane frame modelling of the test structure 
 

A fiber model, with the material properties based on results obtained in material testing, was used for 
the column. Axial and rotational springs were included in the model at the base of column to account 
for the gravity load. The slab-column joint was assumed to be rigid and the use of this assumption 
tends to correlation with test results as indicated in related studies. Table 2.1 shows the recommended 
values for α and β factors from Pecknold, 1975; Allen et al., 1977; ASCE/SEI 41; and FEMA 274. 
ASCE/SEI 41 uses the recommended values of α and β from Hwang et al., 2000. 
 



Table 2.1. The recommended values of α and β form different models 
Models in the Literature  α values β values 

Pecknold (1975) 0.7 0.68 
Allen et al. (1977) 0.54 0.557 

FEMA 274 0.5 0.333 
ASCE/SEI 41 0.5 0.333 

 
Pushover analyses were conducted using different α and β values in the analytical model (shown in 
Table 2.1) in order to compare with the experimental result. Results presented in Fig. 2.2 indicate that 
the values obtained from FEMA 274 or ASCE/SEI 41 for α and β capture the lateral load versus 
displacement response of the tested system reasonably well. It can be concluded that the recommended 
values from FEMA 274 correlate well with the experimental results. Therefore, the suggested values 
of α and β by FEME 274 are used in the modeling of slab beam element in the next section.  
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2 Lateral load Verse Drift Ratio (%) for specimen S2 
 
 

3. ANALYTICAL MODEL 
 
Modelling the behaviour of slab-column frame is complicated by the need to address the potential for 
punching failures at slab-column connections, which may occur by either stress-induced failure or 
drift-induced failure. Stress-induced failure refers to the case when the shear stress on the slab critical 
section exceeds the nominal shear stress and drift-induced failure refers to the case when the shear 
capacity degrades to the point where it equals the demand. (Pan et al., 1989; and Kang, 2004). Shear 
demand-capacity relation by Aschheim et al., 1992 is shown in Fig. 4.1. Moehle in 1996 reported that 
punching failure of slab-column connection is primarily a function of gravity shear ratio on the slab 
column critical section and the interstory drift ratio imposed on the connection. Additional factors that 
can affect the modeling of the slab-column behavior are the connection type (interior, exterior, and 
corner), and whether the shear reinforcement is provided. This section is focused on modeling the 
behavior of interior slab-column connections with and without shear reinforcement. 
 
 
4. MODELING 
 
The three-dimensional interior slab-column connections tested under reversed cyclic loading were 
modeled as plane frames as shown in Fig. 4.2. A fiber model (Spacone et al., 1996) was used for the 
column. The column fiber model developed by Spacone et al., 1996 is relatively simple model which 
accurately captures nonlinear flexural-axial load behavior. The column cross section was subdivided 
into confined (core) and unconfined (cover) concrete fibers, and steel (rebar) fibers. The slab-column 
joint was assumed to be rigid, as studies indicate that use of this assumption tends to produce better 
results (Allen et al,. 1977). The α and β values used for the “slab” beam element in the analytical 
model were 0.50 and 0.33 respectively as discussed in section 2. The OpenSees platform (2007) 
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(version 2.0) is used to conduct the analytical studies. The following subsections describe the plane 
frame model and the models for each component. 
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Figure 4.1 Shear demand-capacity relation (Aschheim et al., 1992). 
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Figure 4.2 Plane frame modelling 
 
4.1 Slab-column connection modelling 
 
The nonlinear behavior due to yielding of slab reinforcement within the column strip or within the slab 
transfer width of hc 32  adjacent to the slab-column connections is modeled as shown in Fig. 4.3. A 
rigid-plastic connection (torsional) spring is used to monitor the moment transfer at the slab-column 
connection. Column strip springs monitor slab moments on either side of the slab-column connection. 
Nonlinear slab responses are modeled using zero length plastic hinges at the end of the slab-beam. 
Nonlinear behavior of the slab-column connection is modeled using a rigid-plastic connection spring 
in combination with the limit state model. Linear and nonlinear column responses are modeled using a 
fibres model, as described earlier. Given this model, flexural yielding occurs only if the nominal 
moment capacity of the column strips plastic hinge is reached, or if the unbalanced nominal moment 
capacity of the connection spring (i.e., rigid-plastic torsional spring) is reached. Punching failure is 
monitored using the rigid-plastic connection spring, and can occur if the shear stress on the slab 
critical section reaches a critical value (stress-induced failure) (as defined in ACI 318-08, Equations 
11-33 to 36), or if the limit state associated with interstory drift versus gravity shear stress ratio on the 
slab critical section is reached (drift-induced failure). 
 
4.2. Punching failure prior to yielding of slab reinforcement 
 
Punching failure prior to yielding of slab reinforcement occurs when the sum of direct gravity shear 
stress and shear stress induced by the fraction of unbalanced moment transferred by eccentric shear 
reaches the shear stress capacity on the slab critical section as shown in case (a) in Fig.4.3. 
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Figure 4.3 Modeling of slab-column connection (adopted from Kang, 2004) 
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where b0=the perimeter of critical section, d = the effective slab depth, v = the fraction of unbalanced 
moment transferred by eccentric shear, unbnM , = the unbalanced moment, c is the distance from the 
centroid of the critical section to the perimeter of the critical section that results in the smallest value 
of unbnM , , cJ = property of assumed critical section analogous to polar moment of inertia, and nv = 
nominal shear stress capacity at the connection. The nominal shear strength on the critical section 
within the shear reinforced region is   scn vvv  , whereas the nominal shear strength for the critical 
section outside the shear reinforced zone is cn vv  , where cv  and sv are the nominal shear stress 
capacities provided by the concrete and the shear reinforcement, respectively. Once the shear strength 
is reached, the strength of the connection spring ( unbnM , ) drops suddenly. 
 
4.3 Yielding of slab reinforcement followed by punching failure 
 
Fig. 4.3 (b) shows the rigid-plastic connection spring model for the case yielding of slab reinforcement 
occurs prior to punching failure. The yield capacity for connection spring ( unbyM , in Fig. 4.3) is 

computed based on the slab reinforcement provided within the transfer width of hc 32   as this 
transfer width for FEMA 356 and is hc 52  . 
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Where )( 3,3,





 hcyhcy MorM is the yield moment of the slabs framing into a connection over a transfer 

width for positive bending (or negative bending).Since only a fraction of the unbalanced moment is 
assigned to flexure (e.g., unbyf M , ), the remaining portion of the unbalanced  moment ( unbyv M , ), 
assigned to eccentric shear, is less than that required to result in punching failure using the eccentric 
shear stress model (i.e., slab yielding occurs prior to punching failure). Fig. 4.3 (c) shows that after 
yielding of the connection spring, additional moment transfer at the slab-column connection is 
possible because additional capacity beyond unbyM ,  exists to transfer moment by eccentric shear 
(since punching failure has not occurred); therefore, additional moment is transferred only by eccentric 
shear (i.e., 10  vf and  after reaching hcnM 3, 2

). Post-yield stiffness ( connpyK , ) defined by the 
additional unbalanced moment that results in yielding within the column strip, divided by the plastic 
rotation ( connpl , ) over a transfer width of hc 32  . Kang (2004) showed that connpl , could be 

approximated as    hhcy 3,23  , where hcy 3,   is the yield curvature of the slab over the width of 

c2+3h. Parametric analytical studies carried out by Kang (2004) indicated that use of connpyK ,  equal to 
100% of the elastic stiffness of the slab ( EI  cracked) for an interior connection, produced 
approximately equivalent results of using a post-yield stiffness derived using the yield curvature, 
indicating that the model results are not overly sensitive to the value of connpyK , . 
 
4.4. Punching failure after flexural yielding within the column strip 
 
Flexural yielding within the slab adjacent to the slab-column connection is considered on either side of 
an interior connection when using column strip (rotational) springs as shown in Fig. 4.3 (c). Punching 
failure is modeled by assuming that the moment capacity of the slab drops to a (zero) residual capacity 
once a critical story drift ratio is reached. The critical story drift ratio is detected by using a limit state 
model (Elwood, 2004), as discussed subsequently. The yield moment capacity of the column strip 
spring ( csyM , ) is modeled separately from the nominal moment capacity of the connection spring 

( unbuM , ), such that punching failure can result from either reaching a limiting story drift for a given 
gravity shear ratio (reaching the limit state) or reaching the capacity of the connection spring 
(eccentric shear failure). The estimated post-yield stiffness for the column strip springs ( cspyK , ) 
ranged between 10 to 20% of the elastic (cracked) stiffness of the slab for the test structures (Kang, 
2004); therefore, an average value of 15% of the elastic stiffness can be used for all connections. 
Alternatively, csyM ,  may be estimated as csnM , and the post-yield stiffness can be assigned a value 

close to zero, where csnM ,  is the nominal moment strength of the slabs over the column strip. Values 
for the yield and nominal capacities, and the post-yield stiffness values for all springs are summarized 
in Table 4.1. 
 
Table 4.1. Modeling of connection and column strip springs 

RC Spring Type Yield Capacity Nominal Capacity Post-yield Stiffness 

 
Interior 

Connection 
 
 
 
 
 

Connection 
Spring 

)75.0( f 

][, mkNM unby  ][, mkNM unbn  ]/[, radmkNK conpy  
+81.85 +93.5 1305 
-81.85 -93.5 1305 

Column Strip 
Spring 

][, mkNM csy  ][, mkNM csn  ]/[, radmkNK cspy  

+24.0 +31.0 110 

-67.00 -74.0 270 



4.5. Limit State Models 
 
Elwood et al., (2002) developed a limit state model which can be defined by using nominal shear 
strength versus interstory drift (e.g., Elwood, 2004), whereas for slab-column connections, the limit 
state surface can be defined using the gravity shear stress ratio versus interstory drift (Robertson et al., 
2002 and Kang, 2004). Once the limit state surface is reached (i.e., a prescribed drift limit is reached 
for a given gravity shear ratio), a punching failure is “detected” and the ability of the slab-column 
connection to transfer moment (or unbalanced moment) degrades according to a specified relationship. 
The limit state model for slabs developed by Kang (2004) was based on the best fit line by applying 
linear regression analysis on a limited collected test data (40 experiments) on slabs without shear 
reinforcement. Therefore, this can lead to overestimate or underestimate of the rotation capacity of the 
slab column connections in the model. In this work a limit state model for drift capacity based on 
Artificial Neural Network which was developed by Derogar and Mandal (2012) is adopted. 
 
 
5. ANN MODEL FOR DRIFT RATIO- LIMIT STATE MODEL  
5.1 Artificial Neural Network 
 
Artificial Neural Network is a mathematical model or computational model that tries to simulate the 
structure and/or functional aspects of biological neural networks. It is made up of a large number of 
simple processing units known as neurons (or nodes or units) which are connected to each other to 
form a network (Iruansi, 2012). The connections have weights associated with them referred to as 
synaptic weights. Each signal travelling along a connection is multiplied by the its weight. In 
developing an artificial neural network eight parameters; concrete cylinder strength, percentage of 
flexural reinforcement, yield stress of flexural reinforcement, span length, effective depth, column 
shape, column dimension, and percentage of compression reinforcement were chosen for slabs without 
shear reinforcement and thirteen parameters; concrete cylinder strength, percentage of flexural 
reinforcement, yield stress of flexural reinforcement, span length, effective depth, column shape, 
column dimension, and percentage of compression reinforcement, yield stress of shear reinforcement, 
area of shear reinforcement in 0.5d, 1.0 d, 1.5d and 2.0 d from the column perimeter  were chosen for 
slabs with shear reinforcement as shown in Fig. 5.1. For modeling purposes a feed-forward neural 
network using a back-propagation algorithm was employed. The optimum number of hidden layers, 
the number of processing elements and the network parameters used, are achieved by trial and error 
process. Thus a hidden layer with 5 neurons and 7 neurons were used for slabs without and with shear 
reinforcement respectively in this study. Fig. 5.1 (a) and (b) show the architecture of typical neural 
networks for slabs without and with shear reinforcement respectively. Full detail of the ANN model is 
discussed in Derogar and Mandal 2012. 
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Figure 5.1 Architecture of selected network: (a) slabs without shear reinforcement (one hidden layer with five 
neurons) (b) Slabs with shear reinforcement (one hidden layer with seven neurons)- for clarity, not all neuron 

connections are shown. 



Computations were done by programming in Matlab, using function “newff” which creates a feed 
forward network. Tan sigmoid transfer function was used as shown in Fig. 5.2. 
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Figure 5.2 Tan-Sigmoid Transfer Function 
 
The ANN shown in Fig. 5.2 can be explained as below: The error, E , between the computed value 
(denoted by KO ) and the target output (denoted by KT ) of the output layer is defined as  
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In the above equation, (...)F is the tan sigmoid function, iI  is the input to neuron ""K  of the single 

output layer from the neuron i  of the hidden layer, and K
iW is the weight associated between neuron 

i  of the hidden layer and neuron ""K  of the output layer (Mansour et al. 2004). 52 experiments on 
slabs without shear reinforcement and 35 experiments on slabs with shear reinforcement were used in 
the development of ANN model. This database is adopted from Derogar and Mandal, 2012. Fig. 5.3 
(a) and (b) shows the drift ratio of the slabs at failure, predicted by ANN models for slabs without and 
with shear reinforcement. It is clear from the figure that ANN is able to predict the drift ratios at 
failure with very high accuracy compared to the best fit line model developed by Kang 2004. 

 
 

Figure 5.3 Comparison between measured and ANN predicted drift ratios at failure for (a) slabs 
without shear reinforcement (b) slabs with shear reinforcement. 

 
5.2. Post-punching behaviour and hysteretic behaviour 
 
When the story drift ratio reaches the limit state surface, the strength and stiffness ( degK ) degrade as 
shown for Fig. 4.3 (c). The slopes (stiffness values) of both the connection and column strip springs 
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assigned after reaching the limit state are set to relatively small values for the cyclic reversed loading 
test specimens (e.g., 5% of the nearly infinite elastic stiffness of the springs; 225 kN-m/rad (RC) to 
avoid numerical convergence problems (i.e. an infinite slope cannot be used)). The existing hysteretic 
model available in OpenSees (Elwood et al., 2003) was used to capture the hysteretic behavior (slab 
and slab-column connection). The model used includes the following parameters: xp is a pinching 

factor for deformation during reloading, yp  is a pinching factor of force during reloading, and   , 
where   is the displacement ductility and   is a parameter to define the unloading stiffness (Elwood 
et al., 2003). Theoretically, parameters yx pp , , and    can vary between zero and one; however, for 

this analysis, values of yx pandp  of 0.5 and 0.2, respectively, and   of 0.5 were used. 
 
 
6. NONLINEAR STATIC REVERSED CYCLIC LOADING ANALYSES  
 
Static reversed cyclic loading analyses were conducted to compare model results with envelop results 
measured during the cyclic loading tests for the specimens S1 and S4. Gravity load tributary to the 
column strip was applied to the column via an axial spring. This axial spring was assumed to take a 
very small deformation.  The experimental results for specimen S1 and S4 are shown in Figures 10 
and 11 and are compared to the analytical studies. It can be seen that experimental results are in a very 
good agreement with analytical results and this indicates that analytical model is predicting the 
punching failure very well. According to the results from specimen S1, yielding top bars occur only 
within hc 32    width, which is consistent with the result obtained in the analytical model. Fig. 6.1 
and Fig. 6.2 compares the results from the analytical model to the experimental results for specimen 
S4. In specimen S4 yielding of the slab flexural reinforcement is observed on both hc 32   and 
column strip Fig. 4.3 (c). 
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Figure 6.1 Lateral loads versus drift ratio for 
Specimen S1 
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Figure 6.2 Lateral load versus drift ratio for Specimen 
S4 

 
7. CONCLUSION 
 
Analytical studies were conducted to assess appropriate modification factors to use for effective slab 
width (α) and cracking (β) for lateral load analysis of slab-column frames. Using an effective slab 
width model and a column fiber model, α-values of 0.50, and β-values of 1/3, resulted in generally 
good correspondence between experimental and analytical results and are similar to the values 
suggested in FEMA-274 (1997). In this paper, also a non-linear model for the slab-column 
connections subjected to gravity loads combined with lateral reversed cyclic forces was developed. An 
ANN limit state model for drift ratio was developed for the first time. The limit state model shows an 
excellent agreement with the experiments when compared to the other models available in the 
literature.    
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