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SUMMARY: 
Linear and especially nonlinear analyses of spatially extended structures, such as pipelines and bridges, often 
requires time histories of ground motion at an array of closely spaced points.  As the number of such earthquake 
observations is small worldwide, synthetic motions with desired characteristics become necessary.  A method for 
synthesizing such site specific motions is presented, which is an extension of the SYNACC method, developed 
earlier for a point.  It consists of unfolding in time a site specific Fourier amplitude spectrum of ground 
acceleration, obtained by an empirical scaling model, by representing the ground motion as a superposition of 
travelling wavelets of Love and Rayleigh waves and body waves, which propagate with phase and group 
velocities consistent with the site geology, approximated by parallel layers. The method generates synthetic 
accelerations, velocities, displacements, near surface strains, rotations and curvatures of ground motion. The 
method is illustrated for scenario M6.5 and M7.5 earthquakes. 
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1. INTRODUCTION 
 
The method presented is an extension of the SYNACC method, first proposed by Trifunac (1971), 
which evolved over the years, by inclusion of more current empirical scaling laws for Fourier 
amplitude spectra of acceleration and frequency dependent duration Wong and Trifunac (1978,1979), 
and extension to prediction of rotational motions (Lee and Trifunac, 1985a, 1987), strains (Lee 1990) 
and curvature (Trifunac, 1990), all at a point in space (see also review in Lee (2002)).  This paper 
presents an extension to generating related motions at an array of points on the ground surface.  
Another difference is the introduction of “distance from the edge of the valley”, which is smaller than 
the distance from the source, and which helps control the duration of the record.  Further, the 
expressions for the point strains, rotations and curvatures, derived from the new formulation, differ 
slightly from the previous ones, which do not include spatial derivatives of the amplitude modulation 
of the travelling wavelets. A more detailed presentation of the method and additional examples can be 
found in Todorovska et al. (2012).  In what follows, for brevity, we will use “pipeline” to mean any 
long structure supported by many separate foundations. 
 
The method is based on representation of the ground motion by traveling wavelets of surface and body 
waves, which propagate in space with phase and group velocities that are those of a horizontally 
layered half-space approximating the soil and geology of the site.  The amplitudes of the wavelets are 
such that the total motion in a narrow frequency band matches a target Fourier amplitude spectrum of 
acceleration.   The methodology has been implemented in a computer program, which has built in a 
suite of empirical scaling models for prediction of site specific Fourier amplitude spectra of 
acceleration, and computes the phase and group velocities specific for the site.  A uniform hazard 
spectrum, or any user specified spectrum can also be used.  While the Fourier spectrum determines the 
overall amplitudes of motion, the layered structure determines the distribution of the energy in time at 
a given site, and also the causal relationship between the motions at neighboring points along the 



 

 

Fig. 1    Model.  

supports of the structure. This causal relationship is such that the motions further away from the 
source are delayed relative to the closer points differently in different frequency bands.  Examples are 
shown of time histories for ground accelerations, velocities and displacements in the radial, transverse 
and vertical direction, and radial (normal) and transverse (shear) strains, at a point and at an array of 
points. 
 
This physical model – empirical method has clear advantages over both the engineering stochastic 
methods and the seismological physics based methods. The former methods (see recent 
comprehensive review in Zerva (2009)) produce motions with stationary frequency content over the 
entire duration, in contrast to the nonstataionary nature reveled by the many observations. Further, 
motions at an array of points are generated using overly simplified coherency function, which is based 
on a single valued  phase velocity, rather than the complete site-specific set for all body waves and 
surface wave modes.  The latter methods involve numerical simulations based on a physical model of 
the earthquake source and of the wave propagation from the source to the site.  They produce motions 
with correct physical nature, but involve many assumptions and need to be validated with data.  Also, 
due to the lack of detail in the available information about the earthquake source and the wave path, 
they have difficulties to model high-frequency content of the synthetic motions. The SYNACC 
method, which is neither stochastic nor purely physics based, does not suffer from these shortcomings.  
It produces motions with amplitudes that are, by definition, consistent with observations over a broad 
frequency range. Also, the motions are nonstationary in a physically meaningful sense and consistent 
with the site soil and geology.  
 
 
2. METHODOLOGY 
 
The geology between the earthquake source and the site can vary considerably, especially for large 
distances, and different types of waves will arrive at the site via different wave paths, as illustrated in 
Fig. 1, showing the earthquake fault, and a segment of a pipeline located on sediments.  The surface 
waves (Love and Rayleigh) arrive horizontally through the low velocity layers, with velocities that are 

frequency dependent, defined by the dispersion in the layers of site soil and geology, while the body 
waves arrive from depth at an angle, which is close to vertical for soft geology near the surface.  
Further, the amplitude attenuation is different for body and surface waves, due to different geometric 
spreading, and for both waves, the attenuation is frequency dependent.  The total effect can be 
predicted reliably, in statistical sense, using empirical scaling laws for Fourier amplitude spectra of 
acceleration.   Considering the nature of these processes, in the SYNACC methodology, over the 
frequency band of interest, 0 to 25 Hz, the empirically predicted Fourier amplitude spectrum is 
partitioned in N  narrow non-overlapping subbands, and the energy in each subband is partitioned 



 
Fig. 2   Site velocity profile. 

Table 1  Profile for dispersion model 3 
 

 
No. 

h  
[km] 

α  
[km/s] 

β  
[km/s] 

ρ  
[gm/cm3] 

1a 0 .03 0.4335 0.25 1.20 
1b 0.03 0.867 0.50 1.2 
1c 0.12 1.70 0.98 1.28 
2 0.55 1.96 1.13 1.36 
3 0.98 2.71 1.57 1.59 
4 1.19 3.76 2.17 1.91 
5 2.68 4.69 2.71 2.19 
6 ∞ 6.40 3.70 2.71 

among surface and body waves. Waves in a narrow frequency band propagate as groups, forming 
wavelet packets, the amplitudes of which are localized in time, and propagate with their group 
velocity.  The total motion, therefore, can be represented as a superposition of such wavelet packets. In 
the following, the representation of the surface and body waves that enables generation of related 
motions at an array of points is presented. 
 
2.1 Representation of Surface Wave Motion at a Site 
 
To expand the surface waves, the soil and geology at the site is locally approximated by a horizontally 
layered half-space, as shown in Fig. 1.  Let ih , iρ , iα  and iβ  be the thickness, mass density and P- 
and S-wave velocities in the i -th layer, with i = 1, … , L , and let the x -axis point in the direction of 
wave propagation.  The layer boundaries define a boundary value problem for the displacement, which 
has a solution that is a surface wave only for a discrete set of frequency dependent phase velocities 

( )mc ω , obtained from the roots of the characteristic equation for the particular problem (Thompson 
1950; Haskell 1953; Mahta et al. 2007). The displacement for an eigenvalue constitutes an 
eigenfunction (or a mode), and any surface wave motion then can be represented as a linear 
combination of these eigenfunctions.   
Fig. 2 shows an example of a velocity profile, proposed by Trifunac (1971) to approximate the 

geology of a site in El Centro in Imperial Valley, California, and used in subsequent work. In 
Todorovska et al. (2012), we show examples for this profile and also for two of its variants, which are 
softer in the top 180 m.  In this paper, we show only results for the variant referred to as dispersion 
model 3.  Table 1 shows the properties of the layers for that model we use in this paper, and Fig. 3 
shows the phase and group velocities,  ( )mc ω  and ( )mU ω  1, ,5m = … , for the first five modes of 
Rayleigh and Love waves, for all the three variants.  The Rayleigh waves are surface waves with in-
plane particle motion along an ellipse, which is usually retrograde at the surface, and with vertical to 
horizontal aspect ratio > 1.   The Love waves are surface waves with out of plane particle motion. The 
group velocity ( ) /m mU d dkω ω� , where ( ) / ( )m mk cω ω ω�  is the horizontal wave number, is the 
velocity with which the amplitude envelope of the wavelet packet propagates, and with which the 
energy is transported.   The number of modes is finite for a given frequency, and increases with 
frequency. The first mode exists at all frequencies, while the higher modes exist only for high enough 
frequencies.  The phase and group velocities for high frequencies approach asymptotically the shear 
wave velocity of the top layer for the model, which is the softest.    
 
The synthesis is based on dividing the frequency band of interest, 0 to 25 Hz, in N  non-overlapping 
subbands, assuming uniform Fourier amplitude within the subband, and in each band, representing the 
surface wave motion as a superposition of the eigenfunctions, evaluated at the central frequency of the 
subband.  Let nω  and nωΔ  be the central frequency and half-bandwidth of the n -the subband, 

( )nm m nU U ω=  and ( )nm m nc c ω=  be the group and phase velocities of the m -th mode in that 



 

Fig. 3 Phase velocities ( )c f  (left) and group velocities ( )U f  (right) for Rayleigh and Love 
waves, for three geology profiles, differing only in the top 180 m.   

subband,  and let ( ; )nmw x t  be the eigenfunction of the m -th mode in the n -th subband,  at point x  on 
the free surface ( 0z = ), and at time t .   Then   
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is the complex horizontal wave number, and Q  is the quality factor, assumed to be constant (Trifunac, 
1994).  If no material attenuation is assumed, 1/ (2 ) 0Q =  and nmk  is real.   Function ( ; )nmw x t  
represents a traveling wavelet, which is a complex exponential of frequency nω , amplitude modulated 
by a sinc  function.  The amplitude modulation  
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is a window in time with half-width /n nt π ωΔ = Δ , which propagates with velocity nmU , while the 
phase propagates with velocity nmc .   Consequently, at a point x , the phase has time lag / nmx c , and 
the center of the amplitude envelope has time lag / nmx U  relative to the reference point, 0x = .   



Then, the Fourier transform of the wavelet ( ; )nmw x t  is 
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represents a box function with half width nωΔ , centered at frequency nω , with amplitude scaled to 

/ nπ ωΔ   and phase shifted by  nmk x .  
 
According to Eqns (1) and (4), the energy of the wavelet ( )nmw x  is localized, in time - around 

/ nmt x U=  with spread /n nt π ω±Δ = ± Δ , and, in frequency, around nω ω=  with spread nω±Δ , i.e. 
within a rectangle of constant area ( )( )2 2 2n nt ω πΔ Δ =  in the phase plane.  Consequently, finer 
division of the frequency range (smaller nωΔ ) will lead to wider in time wavelets ( ; )nmw x t , which is 
a manifestation of the Heisenberg-Gabor uncertainty principle for signals (Gabor 1946, 1953).  
 
Let ( , )u x t  be the associated analytic signal of a generic component of motion (the specific expansions 
will be presented in one of the following sections.  Because scaling laws for Fourier spectra of 
acceleration are available, we start with the representation of acceleration in a series of wavelets 
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where nM  is the number of modes that exist in the n -th subband.   
 
The coefficients of the expansion *

nmA  are complex valued and depend on the amplitude of the target 
spectrum, but, for a given site geology, they are related, as shown in (Trifunac 1971) for a site in 
Imperial Valley, and their relative amplitude depends on the frequency and mode number.  We 
represent them as  
 

( )*
1 2( ) ( )exp ran

nm n n nmA A m A iα ω φ=   (7) 

 
where ran

nmφ  is a random phase between π−  and π , describing the randomness in the radiation of 
energy from the earthquake source and other randomness along the wave path until the arrival to the 
region near the site, represented by the medium with parallel layers (Fig. 1).  Functions 1( )A m  and 

2( )nA ω  are site specific, and their product 1 2( ) ( )nA m A ω  can be thought of as a site dependent mode 
participation factor.  The coefficients ( , )n n nα α ω ω= Δ , for given division in subbands, depends only 
on the target spectrum that is to be matched by the synthetics.  
 
The representation (6) differs from the previous representation as follows.  In the latter, the phase 
delay at point x  is ( )/ ran

n mn nmU tω φ+ , i.e. the lag of the amplitude modulation plus some random 
phase shift, while in this paper, the phase lag is ( )/n mnc tω . In this paper, we consider also material 
attenuation due to Q , which affects the difference between the motion at different points of the array.  
A minor difference is that the random phase is part of the coefficients of expansion, and that the 
associated analytic signal is expanded.  Another significant difference is in the definition of the 



reference point 0x = .  In the latter, 0x =  is the epicenter of the earthquake, while, in this work, it is a 
point between the epicenter and the site, from where the parallel layers geology can be adopted to be 
representative of the wave path.  This point can be referred to as the “the edge of the valley”, and x =   
representative distance from the edge of the valley. Therefore, in this paper, x  is just the distance over 
which dispersive wave propagation occurs consistent with the given parallel layers of soil and 
geology, while the target spectrum to be matched depends on the hypocentral distance R  of the site 
from the source (Fig. 1).  Such definition of the reference 0x =  is more useful for modeling, as the 
geology can vary considerably between the source and the site.  It also helps control the duration of 
the synthetic motion, and avoid the artifact of unrealistically long duration of the synthetic motion for 
large source to site distances and softer near surface soil layers. Because the parallel layers structure is 
an idealization, the “distance from the edge of the valley” is not exact but an abstraction, and can be 
chosen by trial and error or by iteration, until the duration of the synthetic motion is satisfactory, based 
on some subjective or objective standard, such as empirical scaling laws.  
 
2.2  Expansion of Body Waves 
 
The propagation of body waves is essentially nondispersive, and ( ) ( )n nc Uω ω= . They arrive at the 
site from depth, often close to vertical due to progressive bending of the rays towards the surface (Fig. 
1), and consequently propagate horizontally with larger phase velocities ( )nc ω  than the surface 
waves. Further, their amplitude at a given frequency reflects the interference characteristics of the 
layers, which depends on incident angle.   In the SYNACC synthesis, the body waves are treated as 
two additional “surface wave modes”, one for P- and the other one for S-waves, with large 
phase/group velocities, and contributing respectively to the in-plane and out of plane motions, and 
with mode participation factor same as those for the Love modes, i.e. not reflecting the site 
interference characteristics, but with the flexibility to increase or decrease their participation, relative 
to that of the surface waves. Site specific interference features could be included by appropriate 
frequency dependent mode participation factors, derived e.g. using the propagator matrix of the 
medium (Mehta et al. 2007). Pipelines, however, are light, long and flexible structures, hence more 
sensitive to strains and differential motions, which are caused largely by the surface waves, and 
including the site interference (resonances) is not essential.  
 
2.3  Expansion Coefficients for a Site and Motion at an Array of Sites 
 
The site specific mode participation factors, 1 2( ) ( )nA m A ω , can be determined by analysis of recorded 
motion in the region, as in Trifunac (1971).   In this paper, we use the same functions. The coefficients 

nα  are determined from the requirement that some representative value of ˆ( ; )u x ω��  over the n -th 

subband matches a target value, ( )tar
nFS ω .  For example, such representative value can be obtained 

by averaging  10 ˆlog ( ; )u x ω��  and converting back to linear scale.  

  
The sites where related motions are needed for analysis of extended structures are typically at 
distances from few tens of meters to few kilometers.   For such distances, it is assumed that the motion 
differs only because of deterministic propagation and attenuation due to Q , while the randomness in 

phase and mode participation factors, included in coefficients *
nmA , is the same.  For such an array of 

sites, the motion at one representative site, at 0x x= , is first synthesized by matching the target 

spectrum, which gives the coefficients *
0( )nmA x , and the motion at another sites, at 0x x x= + Δ , is 

then computed as  
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2.4  Components of Linear Motions, Strains, Rotations and Curvatures 
 
Let ( ; )xu x t�� , ( ; )yu x t��  and ( ; )zu x t��  be the components of acceleration along the coordinate axes as in 

Fig. 1, each having their own expansion.  Because ( ; )xu x t  and ( ; )zu x t  are expanded in Rayleigh 

modes, the expansion wavelets ˆ ( ; )x
nmw x ω  are as in Eqn. (4) with group and phase velocities R

nmU  and 
R
nmc  specific for the mode, and ˆ ˆ( ; ) ( ; )z x

nm nm nmw x V w xω ω=  where ( )nm m nV V ω=  is the complex ratio 
of vertical to horizontal amplitude of the elliptic particle motion at the surface for the mode.  
Similarly, ( ; )yu x t  is expanded in Love modes, and ˆ ( ; )y

nmw x ω  are as in Eqn. (4) with group and phase 

velocities L
nmU  and L

nmc  specific for the mode.  The corresponding representations of velocities, 
displacements, strains, rotations and curvatures can be easily obtained in the frequency domain from 
the representations of acceleration, and the analytical temporal and spatial derivatives of the wavelets.  
The point axial and transverse shear strains are obtained from 
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the vector point rotation is obtained from  
 

( ; ) ( ; )x u xψ ω ω=∇×
G G   (10) 

 
and the curvatures are obtained from the second derivatives of displacement (complete expression are 
presented in Todorovska et al. (2012).  
 
2.5  Generation of Target Spectrum  
 
Site specific target Fourier amplitude spectra for a scenario earthquake can be generated using an 
empirical scaling model for a Fourier amplitude spectrum, for given earthquake magnitude, 
hypocentral distance, site conditions, and probability of being exceeded, which reflects the uncertainty 
in the scaling law.   The uncertainty in the earthquake size, location and occurrence rate can also be 
included by specifying as a target spectrum a uniform hazard Fourier spectrum, which has amplitudes 
with equal probability of being exceeded from any earthquake considered. 
 
Program SYNACC has built in the empirical scaling models from Trifunac and Lee (1985) and 
Trifunac (1976, 1979, 1989a,b), and can also use uniform hazard spectrum compatible with output of 
program NEQRISK (Lee and Trifunac 1985b), which has built in the same scaling models, or any user 
provided Fourier amplitude spectrum.  The built in scaling models differ in the input parameters, and a 
particular model can be chosen depending on how detailed information in available for the site.  For 
example, earthquake magnitude or Modified Mercalli site intensity can be specified. The local site 
conditions are described on two scales – geologic one, which samples the geology up to the depths of 
the order of kilometers, and local soil one, which samples soil properties near the surface up to depths 
of two hundred meters. The classification based on geology can be described by the categorical 
variable geologic site condition parameter s , which can take values 0 (sediments), 2 (rock), and 1 
(intermediate site conditions), or by the depth of sediments h .  The local soil classification is 
described by the categorical variable local soil condition parameter Ls , which can take on the values 0 
(“rock” soil), 1 (stiff soil) and 2 (deep soil).   

3. RESULTS 
 
The methodology is illustrated for a scenario earthquake.  A suite of synthetic motions and strains are 
presented for different earthquake sizes, hypocentral distances, and dispersion models, at a site and an 
array of sites.  The target Fourier spectra were computed using the MMI-SITE-SOIL model (Trifunac 



 

Fig.   4  Snapshots of synthetic radial, vertical and transverse accelerations at 6 sites, 100 m apart 
in the radial direction, from M6.5 earthquake, at distance 10R = km from the closest site, for site 
condition - sediments ( 2s = ) and deep soil ( 2Ls = ), unfolded with dispersion model 3.  

and Lee 1985).  Synthetic motions were computed at 4096 points in time with time step 0.02 s, i.e. 
with total length of about 82 s.  The trigger time was adjusted by shift of 5 s.   
 
Figs 4 show snapshots of the radial, vertical and transverse synthetic accelerations at six sites, 100 m 
apart in the radial direction, with the closest site at 10R = km distance from M6.5 earthquake.  They 
were unfolded in time with dispersion model 3, and with 4x =  km.  Noticeable differences in the 
acceleration time histories can be seen even though the sites are very close to each other. The 
differences, created by a purely deterministic physical model of wave propagation, are more complex 
than single phase shift and some small amplitude decay. The displacements, having more energy in the 
lower frequency part of the spectrum, differ much less at such small distances, because the lower 
frequency energy propagates with much larger velocities ( )U ω . They exhibit a high degree of 
similarity of the waveforms even at distances several kilometers away, as it can be seen in Fig. 5, 
which shows radial, vertical and transverse synthetic displacements at sites 1 km apart in the radial 
direction.  Fig. 6 shows the agreement of the Fourier transform amplitudes of the synthetic motions 
and target spectra. 



 

Fig.   5  Same as Fig. 5 but showing synthetic displacements at 11 sites, 1 km apart. 
 

 

 
Fig. 7   Fourier Transform amplitudes of synthetic accelerations in Figs 4, 5 and 6.  



4.  CONCLUSIONS 
 

The updated SYNACC method for generation of multi-component synthetic time histories of 
earthquake ground motion at an array of points along the ground surface was presented, needed for 
design of long structures, pipelines and bridges, and in particular for nonlinear analyses in the time 
domain. The method combines empirical scaling laws for Fourier amplitude spectra of acceleration 
with a physical model of wave propagation in a horizontally layered half-space. Consequently, the 
amplitudes of the synthetic motions are consistent in statistical sense with observations, while the 
phase and local differences between points of the array are consistent with local characteristics of 
wave propagation.   The presented examples showed that the method produces realistic and physically 
meaningful time histories.    
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