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SUMMARY: 
Recent advances in the development of a wave travel time methodology for earthquake damage detection in 
buildings, for use in rapid assessment of structural health following an earthquake, are reviewed.  Its main 
advantages over the modal methods are the insensitivity to the effects of soil-structure interaction, local nature, 
and robustness when applied to real structures and strong earthquake response.  Three algorithms are reviewed, 
which identify wave velocity profiles of vertically propagating shear and torsional waves through the building by 
fitting a layered shear beam/torsional shaft model in observed building earthquake response, and a selection of 
results of their application to three buildings: Los Angeles 54-story office building (steel), Millikan Library in 
Pasadena (RC), and Sheman Oaks 12-story office building (RC), damaged by the San Fernando earthquake of 
1971. The appropriateness of the model for different types of buildings, and the accuracy of the identification are 
discussed.   
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1. INTRODUCTION 
 
The ability to monitor the health of an instrumented structure based on information obtained from the 
recorded response, detect damage as it occurs, and issue an early warning during or soon after the 
earthquake (or some other natural or man made disaster), and before physical inspection is possible, 
has significant potential benefits in reducing loss of life and injuries, in emergency response, and in 
recovery following the disaster. For example, a timely decision can be made to evacuate an unsafe 
building, reducing the risk of loss of life and injuries caused by potential collapse of the weakened 
structure during shaking from aftershocks. The timeliness of such information, even when the damage 
is obvious or there is no structural damage, is very useful to a building owner, as physical inspection 
takes time after a disaster, when the demand for inspection is large and the supply of inspection teams 
is limited.  Such monitoring, in principle at least, can detect even nonvisible damage due to an extreme 
event or structural decay.  These potential benefits have been recognized since the beginning of 
deployment of strong motion instruments in structures in the 1930s, and the development of system 
identification methods has been pursued by engineers for many decades (Chang et al. 2003).   To be 
practically useful, a structural health monitoring method must be robust when applied to real data, 
sensitive even to smaller and local damage, and accurate. It should neither miss significant damage 
nor suggest false alarms causing needless evacuation and costly service interruptions. This is 
particularly important for critical facilities, e.g. hospitals.  Satisfying all these requirements has been a 
challenge.  The majority of vibrational methods found in structural health monitoring literature are not 
robust when applied to real structures and large amplitude response data.  Further, the damage 
sensitive parameters vary due to causes other than damage, e.g. amplitude dependency, nonlinear soil 
response (via the mechanism of soil-structure interaction), which is the case for the natural frequencies 
of vibration, and environmental effects (e.g. temperature).  The mode shapes are less sensitive to such 
changes but are more uncertain to estimate (see review in Chang et al. 2003). 
  



 
Fig. 1   The model. a) Layered shear-beam representing a building. b) Layered half-space. 

This paper reviews the progress, since 14WCEE (Todorovska and Trifunac 2008c), in the 
development of a wave propagation structural health monitoring method by the authors.  The method 
uses data from vibrational sensors, and is based on 1D wave propagation model of the building, 
represented as a layered shear beam. It identifies the distribution of shear and torsional wave velocities 
along the building height, which are directly related to the structural rigidity, and serve as damage 
sensitive parameters.  Their changes during an earthquake are monitored by comparison with values 
estimated during an initial time window when the response is small.  Instead of matching the natural 
frequencies of vibration, as do most of the system identification methods (Chang et al. 2003), 
including robust methods (Naeim et al. 2006), which are affected by soil-structure interaction and are 
sensitive to changes in the soil, this method matches pulses in the impulse response functions, whose 
shift in time is not affected by soil-structure interaction.  This method can be viewed as an 
intermediate scale method, bridging the gap between the NDT and global vibrational methods.   
Important advantages of this wave method over the other vibrational methods, which are mostly modal 
(based on detecting changes in the natural frequencies and mode shapes), are its robustness, 
insensitivity to the effects of soil-structure interaction, and local nature, achieved with relatively small 
number of sensors. Applications to three damaged buildings have shown that the identified changes 
are consistent with the magnitude and spatial distribution of the observed damage (Todorovska and 
Trifunac 2008ab, Rahmani et al. 2012). The insensitivity to the effects of soil-structure interaction has 
been demonstrated on analytical models considering foundation horizontal motion (Snieder and Safak 
2006), as well as coupled foundation horizontal and rocking motion (Todorovska 2009a).  The 
developments reviewed are three fitting algorithms (one direct and two iterative), and detailed 
comparative analysis of their spatial resolution and accuracy, in particular for identification using data 
from a dense array.  Other developments include findings on the capabilities and limitations of this 
method, based on detailed application to different types of buildings (Rahmani and Todorovska 
2012bc, Rahmani et al, 2012).  

2. METHODOLOGY 

The building is modeled as a layered shear beam (Fig. 1a), described by the floor heights h , shear 
modulus μ  and mass density ρ  and  shear wave velocity /V μ ρ= , which  serves as the damage 
sensitive parameter.  For horizontal base excitation, the building model is mathematically identical to 
that of a horizontally layered half-space representing near surface geology (Fig. 1b).  Nevertheless, 
geophysical identification methods are not directly applicable to buildings due to physical differences.  
One is that buildings are slender structures, with foundation rocking DOF, and soil-structure 
interaction via foundation rocking, and another one is that they also deform in bending, to a degree 
depending on the structure.  The former implies that the structural damping cannot be identified by 
impulse response analysis (Todorovska 2009a, Todorovska and Rahmani 2012), and the latter implies 
some degree of dispersive wave propagation, which is not captured by the model.  Another difference 
is the demand for high accuracy in application to structural health monitoring.   



We developed three fitting algorithms of model impulse responses (computed from the propagator in 
the time domain; Haskell 1953, Gilbert and Backus 1966, Trampert et al. 1993, Todorovska and 
Rahmani 2012) in observed impulse responses (computed from regularized transfer-function; Snieder 
and Şafak 2006).  The impulse response functions are computed for virtual source at roof, which are 
much simpler than those for virtual source at base, because reflections from the roof are suppressed, 
and there is no constructive interference of direct and reflected waves, either from the external or from 
the internal boundaries. Herein, the three algorithms are summarized briefly; for details see 
Todorovska and Rahmani (2012) and Rahmani and Todorovska (2012a).  The identification method 
belongs to the class of seismic interferometry or as virtual source methods (Snieder at al. 2006).   
 
Direct Algorithm: It computes the wave velocity directly from the time shifts of the direct pulses, as 

/V h τ= , where τ  is the difference between pulse arrival time at the top and bottom of the layer.  It is 
based on the ray theory interpretation of the impulse response functions, according to which the travel 
time from base to roof is sum of the travel time through the different layers.   
 
Nonlinear LSQ fit Algorithm:  It fits model impulse response functions as waveforms, within time 
windows containing the main lobes of the direct pulses, by minimizing in the least squares sense, the 
sum of the error between the model and observed impulse responses at all levels where motion was 
recorded.  The Levenberg-Marquardt method is used, which is a fixed regressor and small residual 
nonlinear model (Seberg and Wild 2003). This means that the parameters are assumed not to change in 
the time window analyzed, and that it requires close initial values to insure convergence.  We use as 
initial values the parameters identified by the direct algorithm. This wave propagation algorithm is not 
limited by the assumptions of ray theory, such as smoothness in the variation of material properties, 
and accounts for pulse deformation. It also uses information from the pulse amplitudes which are 
primarily governed by the impedance contrast (i.e. distribution of wave velocities).   
 
Time Shift Matching Algorithm:  It is similar to the direct algorithm, and based on ray theory, but is 
iterative and gives more accurate results. The wave velocities are determined recursively from top to 
bottom by iteratively matching the time shifts of the transmitted pulses.  

RESULTS 

We critically examined the identification method and three algorithms, from point of view of their 
appropriateness and limitations in application to buildings, accuracy, and sensitivity to light damage.  
Figures 2-12 show selected results for three buildings: (1) Los Angeles 54-story steel office building 
(NS, EW and torsional responses) excited by Northridge earthquake of 1994 (ML=6.4, R=32 km), (2) 
Millikan Library 9-story RC building in Pasadena, California (NS, EW and torsional responses) 
excited by Yorba Linda, earthquake of 2002 (M=4.8, R=40 km), and Bank of California building (NS 
and EW response) excited by San Fernando earthquake of 1971 (M=6.6, R=27 km).  Only the third 
building was damaged by the earthquake (Blume and Assoc. 1973).  Figs 2, 6 and 11 show photos of 
the buildings, and sketches of vertical cross-sections and floor layouts, in which the location of the 
sensors is marked.   Figs 3 and 7 show results of the identification for the first two buildings, in tabular 
form for the fit of an equivalent uniform shear beam, and, in graphical form, for the more detailed 
multi-layer models.  Figs 4 and 9 show the agreement of the model and observed impulse responses, 
which demonstrates the goodness of the fit.   Figs 5 (left) and 8 (right) compare the model (fixed-base) 
and observed (system) transfer-functions for the same two buildings.  Disagreement is expected for the 
frequency of the first mode, which is affected by soil-structure interaction, while agreement for the 
higher modes demonstrates the goodness of the model for the particular structure.  In Fig. 5 (right), the 
model fixed-base mode shapes are also plotted for the first five modes of the 54-story building.  Fig 8 
(left) shows the agreement of the pulse arrival times at different levels in Millikan library obtained 
from models fitted by the different algorithms, as another demonstration of the goodness of the fit, and 
opportunity to rank the different fitting algorithms.  Fig. 10 shows observed impulse responses for EW 
response of Millikan library in two frequency bands, 0-7.5 Hz and 7-15 Hz, the difference of which is 
an evidence of significant wave dispersion.   Finally, Fig. 12 shows results for the identified shear 
wave velocities of the Bank of California building in moving time windows, for different window size. 



Los Angeles 54-story office building (CSMIP 24629) 

 
 

 
Fig. 2  Los Angeles 54-story office building (CSMIP 24629):  photo, vertical cross-section, and typical 

floor layouts (redrawn from www.strongmotioncenter.org). 

  Equivalent uniform model fit 

  iτ [s] eqβ [m/s] Q  1 / 2Qζ =  
NS  0-1.7 Hz 1.503 139.8 25 2% 
EW  0-1.7 Hz 1.49 141.1 13.8 3.6% 

Torsion  0-3.5 Hz 0.865 243 25 2% 
 

 
Fig. 3  Los Angeles 54-story office building:  identification results for  the NS (top), EW (middle) and 

torsional (bottom) responses. The table shows the equivalent uniform model properties, where Q  and ζ  
are the apparent quality factor and apparent damping ratio. The four columns of plots show:  (1) the 

observed pulse arrival time at the layer boundaries, (2) the assumed mass density profile, (3) the identified 
wave velocity profile during Northridge, 1994 earthquake, and (4) the observed average layer peak drift. 



Los Angeles 54-story office building (CSMIP 24629) 

 
Fig. 4   Los Angeles 54-sory Office Bldg: agreement of observed and  model impulse response functions. 

 
Fig. 5   Los Angeles 54-sory Office Bldg: agreement of observed (apparent) and model (fixed-base) 

transfer functions. The model NS and EW fixed-base mode shapes are also shown. 



Millikan Library (NSMIP 5407) 

 

Fig. 6    Millikan library: photo (left, courtesy of M. Trifunac), vertical cross-section (center), typical floor 
layout (right-top), and sensor locations at basement (right-bottom), (redrawn from Snieder and Şafak 2006). 

  Equivalent uniform model fit 

  iτ [s] eqβ [m/s] Q  1 / 2Qζ =  
NS  0-15 Hz 0.096 405 13.9 3.6% 
EW  0-7.5 Hz 0.16 243 19.2 2.6% 
EW  7-15 Hz 0.112 347 14.3 3.5% 

Torsion  0-25 Hz 0.084 463 19.2 2.6% 
 

 

Fig. 7   Millikan library: identified velocity profiles during Yorba Linda, 2002, earthquake. The table on the top 
shows the equivalent uniform model properties, where Q  and ζ  are the apparent quality factor and apparent 

damping ratio. The plots show detailed model fits by different algorithms. Top: NS response (0-15 Hz).  
Middle: EW response (0-7.7.5 Hz, left; 7-15 Hz, right). Bottom: torsional response (0-25 Hz).  The algorithms 

used are: LSQ = the nonlinear least squares fit (waveform fit, based on wave propagation theory), TSM = 
iterative the time shift matching, and Direct = the direct algorithms (based on ray theory). 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For Los Angeles 54-story steel building, the results show that, in the frequency band 0-1.7 Hs for NS 
and EW motions and 0-3.5 Hz for torsion, which include the first five modes of vibration, the 
structural response is essentially nondispersive and predominantly in shear. Therefore, a layered shear 
beam/torsional shaft model is appropriate in these frequency intervals.   The same is true for the NS 
and torsional responses of the 9-story RC Millikan library for frequencies up to about 15 Hz, which 
contain most of the energy of the response.  For the EW response, this is true for frequencies only up 
to about 7.5 Hz, and dispersive behavior was detected for higher frequencies (Rahmani and 
Todorovska 2012a, Fig. 10).  For both buildings, the structural fixed base frequencies were also 
identified from the transfer function of the fitted model. For Millikan library, the identified 
fundamental fixed-base frequency differs significantly from the observed apparent frequency, 
especially for the NS response, due to soil-structure interaction, which agrees qualitatively with other 
studies.  The difference is 42% for the NS, 33% for the EW and 31% for the torsional response.  For 
the 54-story steel building, the difference is much smaller, in agreement with smaller degree of 
frequency shift for flexible structures (13% for NS, 5% for EW, and 6.5% for torsional responses). 
This difference is much smaller (more than three times) for the higher modes, which indicates very 
good fit and appropriateness of the simple nondispersive model for this building (Rahmani and 
Todorovska 2012b).  Study of five different earthquakes, none of which caused damage, showed small 
variability of the identifies wave velocities, with sample coefficient of variation less than about 2% for 

Millikan Library (NSMIP 5407) 

 
Fig. 8   Millikan Library: agreement of observed and model pulse arrival times (left) and of observed 

(apparent) and model (fixed-base) transfer functions (right) for fits using different algorithms.  



Millikan Library (NSMIP 5407)

 

Fig. 9  Millikan Library: agreement of observed (Yorba Linda, 2002) and model (LSQ fit, 
2%ς = ) impuse responses for  NS (0-15 Hz),  EW (0-7.5 Hz), and torsional  ( 0-25 Hz) responses. 

 
Fig.  10  Millikan Library: evidence of dispersion in the observed EW response (Yorba Linda, 

2002).  Impulse responses are shown in different frequency bands.   Left:  0-15 Hz (solid line) and  
0-7.5 Hz (dashed line).  Center:  0-7.5 Hz.  Right:  7.5 – 15 Hz.  

the equivalent uniform model wave velocities, and less than about 3.5% for the individual layers 
(Rahmani and Todorovska 2012b,c). 
   
The Bank of California building suffered only light structural and nonstructural damage during the 
1971 San Fernando earthquake, which was its first exposure to strong shaking.  Yet, the moving 
window analysis shows significant permanent decrease of shear wave velocity, well beyond the 
uncertainty of the estimation, between Gnd and 6th floors of about 30% for NS and 37% for EW 
responses, and between 7th floor and roof of about 25% (Rahmani et al. 2012), indicating that this 
interferometric method is sensitive to light damage in RC buildings.   

 
Comparison of the performance of the three fitting algorithms showed that the nonlinear LSQ fit of 
pulses as waveforms  (i.e. the wave algorithm) gives most accurate estimation, especially for 
identification of detailed models from dense arrays (Rahmani and Todorovska 2012a). Over carefully 
chosen frequency band, it converged almost always, even in shorter moving windows (8-12 s).  The 
scatter in the results for different window length (Fig. 12) is due to the Heisenberg-Gabor uncertainty 
principle (Gabor 1946), and cannot be avoided in windowed analyses.  This scatter can be used as a 
measure of the uncertainty of the estimated wave velocities (Rahmani et al. 2012).   The direct 
algorithm (ray algorithm), gives good initial estimates for the nonlinear LSQ algorithm (wave 
algorithm), but should not be used per se for identification of detailed models (e.g. one floor per 
layer), because of poor accuracy. Also it should not be used for identification of models with slabs, for 
which it produces biased estimates, due to wave scattering from the slabs, ignored in ray theory.  



 
Sherman Oaks 12-story Office Bldg. (NSMIP 0466) 

 
 

Fig. 11 Sherman Oaks 12-story Office Bldg.: photo (courtesy of M.Trifunac), and sketches of floor plans and 
side view showing the location of the strong motion instruments (redrawn form  

Bloome and Assoc. (1973). 
 

 
Fig. 12 Sherman Oaks 12-story Office Bldg.: results of identified layer shear wave velocities, by the nonlinear 

LSQ fit algorithm (0-6 Hz), in moving time windows, for different window length (8s, 10 s and 12 s).

 
CONCLUSIONS 

It is concluded that the presented interferometric identification method, involving matching of pulses 
in impulse responses and representation of buildings as layered shear beams, is valid for both steel and 
RC buildings up to some critical frequency, and is sensitive to light damage in RC buildings. Further, 
it is not sensitive to the effects of soils-structure interaction, and identifies the true fixed-base 
properties of the structure, in contrast to methods that match the modal frequencies (e.g. Naeim et al. 
2006).  It can be used: (1) to track changes in the structural integrity, and also (2) to simulate the 
building response and its performance during an earthquake, complementing performance based 
methods for rapid post earthquake assessment of buildings in programs such as the San Francisco 
Building Occupancy Resumption Program and similar future programs (City and County of San 
Francisco 2006, Naeim et al. 2006).  Our analyses of Imperial County Services building, Van Nuys 
hotel building, Millikan library, Los Angeles 54-story steel building, Bank of California building, and 
Borik-2 building provide specific quantitative knowledge about the changes of wave velocities 
associated with damage, and about their variability due to factors other than damage (Todorovska and 
Trifunac 2008ab, Todorovska 2009b, Trifunac et al. 2010, Rahmani and Todorovska 2012abc, 
Rahmani et al. 2012).  They showed that steel structures exhibit smaller variability due to factors other 
than damage than the RC buildings, for which the history of prior exposure to strong shaking is 
important.  Analysis of more such case studies will help expand and refine such knowledge for 
different types of structures.     
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