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SUMMARY: 
The discrete element method is characterized by its applicability for moving boundary condition. In this paper, 
as a basic study on application of discrete element method for slope failure analysis, effects of particle shape to 
the result of analyses are studied. To represent the irregular particle shape, some sphere particles are combined as 
a cluster. Tension forces are allowed to combine sphere particles and keep these relative positions, and it 
consequently makes behave the combined sphere particles as a unified object. The behaviour of a mass model 
that consists of the clusters is investigated by comparing the result of similar mass model consists of sphere 
particles. The result reveals the importance of particle shape on the behaviour of the mass model. 
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1. INTRODUCTION 
 
In decades, disastrous slope failures were frequently reported while severe disaster events such as 
strong earthquakes and downpours. Many research projects have been organized to figure out its 
mechanism and developed countermeasures to prevent the disasters. Conventionally, important role of 
them is forecasting occurrence of slope failures; however, its aim is extending to quantitative 
estimation of extent of damage district recently because of spreading of the idea of the performance 
design. For the estimation, the deformation of slopes has to be predicted quantitatively. For this 
purpose, a method that adequately handles moving boundary problem is required, and various types of 
numerical methods have been studied. As one of them, discrete element method is quoted. 
 
Discrete element method (DEM) is one of the methods based on mechanics of granular materials and 
applied for masses that are formed with granular materials. In DEM, the masses are numerically 
represented as a group of points, and each point is associated with a physical particle in the mass. 
Further, relationships among the particles are modelled by springs and dashpots that are respectively 
installed in normal and shear directions. DEM has been widely applied for various fields of 
engineering (Venugopal et al, 2001, Radziszewski, 1999), and especially, in case of civil engineering, 
it has been adopted for the analyses on element tests, slope failure and rock falls due to its 
applicability for moving boundary problems and easiness.  (Cheng et al, 2003) 
 
DEM often adopts sphere particle for the analysis to simplify its computational procedure. However, 
the use of sphere particle leads insufficient representation of interlocking between soil particles, and it 
may have significant influence on the result of analyses. To clarify the nature, the feature of DEM that 
takes the effect of particle shape into account is studied in this paper. For the consideration of particle 
shape in DEM, some sphere particles are combined and form a cluster to reproduce irregular shape of 
soil particles, and tension forces among the particles are introduced to keep relative position of each 
particle in the cluster. This method is applied for some examples and its feature is examined by 
comparing the result of analyses for models that are respectively formed by sphere and clustered 
particles. 



2. INTRODUCTION OF DISCRETE ELEMENT METHOD 
 
DEM models masses as group of computational points as illustrated in Fig. 2.1. 
 

 
 

Figure 2.1 Representation of mass by DEM 
 
The each computational point in the group is associated with a physical particle, and it is assumed that 
the behavior of the particle is governed by its body force and interaction force among particles. The 
governing equation of the particle is described as follows. 
 =  (2.1) 
 
This is the equation of motion, and ,  and  denote external and internal force, mass of the 
particle, and acceleration of the particle, respectively. The particles are modelled as rigid body and 
relationship between two particles are represented by springs and dashpots that are installed in normal 
and shear direction between the particles as illustrated in Fig. 2.2. 
 

 
 

Figure 2.2 Springs and dashpots between two particles 
 
Since  in Eqn. 2.1 includes interaction force between the two particles, Eqn. 2.1 is expanded as 
follows. 
 ̈ + ̇ + = 0 (2.2) ̈ + ̇ + = 0 (2.3) 
 
in which,  is viscosity of dashpot,  is spring constant,  is moment of inertia,  is radius of 
particle,  is translation of particle and  is rotation of particle, respectively. Since behavior of 
particles is coupling each other, Eqns. 2.2 and 2.3 are consequently coupled equation. For solving 
these equations, implicit time integration is quoted as a candidate of time integration to obtain the 
result precisely. However, the cost of it rapidly increases with increment of number of particles, and it 
leads difficulty of its application for practical problems. Hence, this equation of motion is explicitly 
integrated in time domain conventionally. Therefore the location, velocity and acceleration of each 
particle are obtained by assuming that the acceleration in current time step is estimated from the 
velocity and location in previous time step as described as follows. 
 [ ̈ ] + [ ̇ ] △ + [ ] △ = 0 (2.4) [ ̈ ] = − [ ̇ ] △ − Κ[ ] △  (2.5) 



For solving Eqn 2.5, contact of particles has to be evaluated to compute its interaction force. The 
contact of particles is evaluated from the distance between two particles as shown in Fig. 2.3. 
 

 
 

Figure 2.3 Evaluation of particle contact 
 
As illustrated in Figure 2.3, the distance between two particles is computed as follows. 
 

= − + −  (2.6) 
 
where , , ,  and  denote  coordinate of particle ,  coordinate of particle ,  
coordinate of particle ,  coordinate of particle  and distance between particle  and , 
respectively. Then it is evaluated that two particles contact each other if following equation is fulfilled. 
 + ≥  (2.7) 
 
For obtaining point of contact between particle  and ,  that is angle between line that connects 
center of particle  and  and  axis are calculated from following relationship. 
 sin = − − /  (2.8) cos = − − /  (2.9) 
 
Then the relative displacement between the two particles are obtained as follows 
 Δ = Δ − Δ cos + Δ − Δ sin  (2.10) Δ = − Δ − Δ sin + Δ − Δ cos + Δ + Δ  (2.11) 
 
in which, Δ , Δ , Δ , Δ , Δ , Δ ,  Δ ,  Δ ,  and R  are relative displacement in 
normal and shear direction, displacement of particle  and  in  direction, displacement of particle 
 and  in y direction, rotation of particle  and  and radius of particle  and , respectively. 

 
Interaction forces between two particles are described by using relative displacement and velocity in 
normal and shear direction since the two particles are connected by springs and dashpots in the two 
directions as illustrated in Fig. 2. 2. The interaction force in normal direction is described as follows. 
 Δ = Κ Δ  (2.12) 



Δ = η  (2.13) [ ] = [ ] △ + Δ  (2.14) [ ] = Δ  (2.15) [ ] = [ ] + [ ]  (2.16) 
 
where, Δ ,  Κ , Δ , η , Δt, [ ] △ , [ ]  and [ ]  are increment of the elastic interaction 
force, spring constant, increment of viscous force, coefficient of viscosity, time interval, elastic 
interaction force in previous step, elastic interaction force in current step and total interaction force in 
current step. It is note that compression force is positive in the interactive force in this paper. 
Furthermore, it is noteworthy that the negative interaction force in normal direction is cut off since 
generally tensional force is not considered in DEM.  
 
In the meantime, the interaction force in shear direction is introduced as well 
 Δ = Κ Δ  (2.17) [ ] = [ ] △ + Δ  (2.18) Δ = η  (2.19) [ ] = Δ  (2.20) [ ] = [ ] + [ ]  (2.21) 
 
where, Δ ,  Κ , Δ , η , [ ] △ , [ ]  and [ ]  are increment of the elastic interaction force, 
spring constant, increment of viscous force, coefficient of viscosity, elastic interaction force in 
previous step, elastic interaction force in current step and total interaction force in current step. It is 
noteworthy that the friction force generally has an upper limit that is given as Coulomb friction. 
Therefore, in this paper, the upper limit of the friction force is applied to the interaction force in shear 
direction. 
 
Total forces to each particle are obtained by summing interaction, external and body force in each axis 
direction as follows. 
 [ ] = ∑ {−[ ] cos + [ ] sin } + mg (2.22) [ ] = ∑ {−[ ] sin + [ ] cos } (2.23) [ ] = − ∑ {[ ] } (2.24) 
 
in which, [ ], [ ], [ ] and  denote total force in  direction, total force in  direction, total 
moment and radius of particle , respectively. Since these forces forms total force to the particle , the 
acceleration of particle  is obtained by dividing these forces by the mass or moment of inertia as 
follows 
 [ ̈ ] = [ ]/  (2.25) [ ̈] = [ ]/  (2.26) [ ̈ ] = [ ]/  (2.27) 
 
Velocity and location of particle  are computed explicitly from the acceleration of particles that are 
described in Eqns. 2.25 to 2.27. This procedure is applied for all of the particles, and behaviour of the 
mass formed by the particles is simulated. 
 
For the procedures that are introduced above, the spring constant and coefficient of viscosity are 
necessary. Although many policies to determine them are proposed in previous research, the spring 
constant is obtained by the Hertz theory in this paper. According to the theory, the spring constant 
between two particles is shown as follows. 
 Κ = ×  (2.28) 



 
The  and  are given as follows. 
 

k = +  (2.29) 

= × +  (2.30) 

= × + ×  (2.31) 

 
where, , , Ε , Ε ,  and  are Poisons’ ratio of particle  and , Young’s modulus of particle 
 and , amount of overlap between particle  and  and contact radius as illustrated in Fig. 2.4.  

 

 
 

Figure 2.4 Brief diagram of assumption of Hertz Theory 
 
Further, the coefficient of viscosity of the dashpot is set as follows. 
 η = 2√ Κ (2.32) 
 
Eqn. 2.32 indicates that the coefficient of viscosity is defined to achieve critical damping if the two 
particles that are connected by the spring and dashpot form a vibration system of one degree of 
freedom. This damping stabilizes the system due to its energy dissipation. 
 
 
3. CLUSTER OF SPHERE PARTICLES 
 
The earth material is cluster of soil particles, and its stiffness and strength are influenced by interaction 
among the soil particles. Generally, the geometric configuration of soil particle is different if the 
material is different, and the difference would be a significant factor that changes nature of the 
interaction. This affects to the total behaviour of the masses modelled by DEM, and it is one of 
significant matter of the prediction of the model behaviour. To consider the influence of irregular 
particle shape, friction force has been conventionally adjusted to fit computed results to experimental 
results. However, this policy has limitation that the representation of interlocking among soil particles 
is insufficient. Hence, in this paper, the variation of particle shape is taken into account in DEM, and 
its feature is investigated.  
 



The irregular shape of particles is represented by combining some sphere particles as illustrated in Fig. 
3.1.  
 

 
 

Figure 3.1 Cluster of sphere particles 
 
The tension force is kept to retain relative position of each particle in the cluster, although the tension 
force is normally cut off in DEM.  
 
 
4. EXAMPLE ANALYSIS 
 
The influence of the irregular particle shape is investigated by some simple examples. Fig. 4.1 briefly 
introduces the example model. 
 

 
 

Figure 4.1 Initial setup of sphere particle model 
 
In these examples, sphere particles or particle clusters that represents irregular particle shape are fallen 
from top of the model, and then stacked on the bottom of the model. After achieving stabilization in 
adequate time of analysis, the state of the models are adopted as initial states of the analyses. All of the 
walls on all side of the models are removed, and then analyses of failure of the mass formed by 
particles or clusters are demonstrated to investigate the effect of its shape. Fig. 4.2 illustrate initial 
state of the example analyses. The left figure in Fig. 4.2 shows the initial state of a case that sphere 



particles are adopted. This case is named Case1. Meanwhile, the right figure in Fig. 4.2 shows the 
initial state of another case that the particle clusters adopted to form the example model. This case is 
named Case2. According to these Figures, the dense of particle or clusters looks slightly different in 
these cases due to the effect of the particle shape. However, the height of the stacked mas is almost the 
same, and it is supposed that the initial configurations of the examples are sufficiently close. 
 

    
 

Figure 4.2. Initial state of sphere particle model (Left) and particle cluster model (Right) 
 
Table 4.1 describes the material parameter for both cases. This is note that the material parameters are 
incompatible with real materials since these are determined only to check the influence of the particle 
shape and not intended to represents real phenomena. Further, the radius of each particle is fixed to 
2.00 mm. 
 
Table 4.1. Material Property 

Time interval [s] 1/500000 Total analysis time [s] 240 
Coefficient of friction 0.05 Mass of a particle [g] 0.064 
Young’s modulus [Pa] 4.00E+6 Poisson’s ratio 0.28 

 
Fig. 4.3 illustrates the transition of model configuration in Case1. According to the left figure of Fig. 
4.3, it is seen that the model starts to fall down after removing all walls on all side and the sphere 
particles that forms the model spreads toward to outside of the wall. After sufficient elapsed time, the 
model proceeds to the equilibrium state. In this process, it is seen that the shape of the mass 
approaches to flat as illustrated in Fig. 4.3. In this analysis, the friction among the particles are taken 
into account to reproduce the effect of the interlocking of particles, however, it is shown that the effect 
is insufficient. Although the resultant shape of the mass is intended to be higher than the result of the 
analysis in its height, it is consequently more flat by tumble of the particles. This is caused by lack of 
interlocking of the sphere particles, and this tendency seems to be different from the behaviour of 
natural soil particles. 
 
Fig. 4.4 illustrates the transition of model configuration in Case2. According to Fig. 4.4, the model 
spreads toward to outside of the wall as well in the beginning of failure of the mass. However, after a 
while, it is shown that the failure stops in the middle of the deformation, and resultant configuration of 
the mass is closer to the common deformation than Case1. This is caused by the effect of the shape of 
the particle cluster. The shape prevents the tumble of the particle and promotes engagement of 
particles in this case. This influence consequently constructs particle skeleton and suppress excess 
deformation of the mass. This result suggests that the consideration of the particle shape is 
significantly important to estimate the deformation of masses in DEM. 
 



    
 

Figure 4.3 Transition of model configuration in Case 1 
 

    
 

Figure4.4 Transition of model configuration in Case 2 
 
Fig.4.5 illustrates the skeleton of particles that are formed by contacts of the particles or clusters after 
sufficient elapsed time in the analyses. In Fig. 4.5, lines imply the contacts of particles. According to 
the Fig. 4.5, it is shown that the connection is uniformly spread all over the mass in Case1. This 
tendency describes a fact that a particle is contacting with the other particle at many points, and the 
contact force is distributed to the points. This implies the interlocking of the particles is weak and 
particle skeleton is not constructed well in Case1. On the other hand, the number of contact points is 
smaller than Case1 in Case2 as illustrated in Fig. 4.5. This fact consequently leads that the contact 
force is relatively higher in Case2. This implies that the number of contact points is reduced since the 
particle cluster forms the skeleton by the interlocking.  
 
Fig. 4.6 and Fig. 4.7 show comparison of time history of contact force of a particle that is located at 
the bottom of the mass in the initial setup. These figures also suggest that opportunities of particle 
contact are more frequent in sphere particle model than particle cluster model and the contact force is 
higher in case of particle cluster model. It is note that the tension force is found in Case2 since it is 
approved.  



    
 

Figure 4.5 Particle Skeleton (Left Case1, Right Case2) 
 

   
 

Figure 4.6 Time history of interaction force in normal direction at bottom of the sphere particle model 
 
 

   
 

Figure 4.7 Time history of interaction force in normal direction at bottom of the particle cluster model 
 



5. CONCLUDING REMARKS 
 
In this paper, the effect of irregular particle shape on DEM analysis was studied. The irregular particle 
shape was represented by combining some sphere particles into a cluster, and the behaviour of masses 
that were formed by the sphere particles and particle clusters were investigated by comparing the 
results. The result of the investigations shows the behaviour of the models clearly depends on the 
particle shape, and it suggests the importance of consideration of the interlocking for the estimation of 
the model behaviour. 
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