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SUMMARY: 
Earthquake source inversion studies have played an important role in improving our understanding of the nature 

of earthquake sources. Source inversion studies for determining the spatial and temporal distribution of 

coseismic slip on relevant earthquake faults have increased dramatically in recent years. There is always a trade-

off between the length of the record used in the inverse problem and the amounts of computational effort need to 

solve it. Thus, there is always a question that how long of strong motion records and broadband waveforms 

should be considered in analysis. In other words, how long of the after-event recordings or coda waves have 

effective contribution in constraining and increasing the accuracy of resulting slip values on fault surface. In this 

article at first, the inverse problem is investigated. Then the effect of the length of the records in inverse solution 

is also found out. 
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1. INTRODUCTION 
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During the past decades, the cities have been developed to a great extent to the hillsides. On the other 

hand, the foothills and skirts which are generally the intersection of the mountain and hills are 

simultaneously the trajectory of the faults. However, the seismic activity of the mentioned faults 

would cause various earthquakes in these regions and due to the presence of important structures in the 

vicinity of the faults, the characteristic of the ground motion in such near field areas are significant. 

Indeed, the specific aspects of each fault will efficacious in determination of the near field ground 

motion characteristics. Though, it is requisite to consider the specific situation of the aforesaid faults 

in the earthquake hazard evaluation. 

In order to take the specific properties of the fault into account while analysing the earthquake hazard 

of the fault, it is necessary to identify these characteristics. The main issue in fault recognition is the 

determination of the fault’s previous activities or that of similar faults which have experimented 

seismic activities during the available history for earthquakes. In other words, the fault’s 

characteristics have to be defined by the inverse solution according to the measured information 

throughout different earthquakes. Providing these facts, the earthquake inverse solution is the first and 

most essential step while identifying the faults properties and undeniably it is one of the most precious 

topics in seismology. 

Executing the inverse solution and obtaining the slip vector on the fault plane, firstly, the stress drop 

during the earthquake on different points could be determined. Accordingly, the stress association rate 

on the fault could be identified. Regarding to the above matter, the prediction of the future 

earthquake’s occurrence time on a specific fault could be feasible (Das & Suhadolc, 1996). Secondly, 

by virtue of the obtained slip vector, the dislocation of different points of the ground surface in regions 

with no recorded earthquake could be determined. However, in this way, the recognition of the seismic 

motion characteristics on the ground surface could be attained during a specific event. 

To facilitate the illustration the authors have supposed a number of records due to a given earthquake 

and they have intended to initiate the inverse solution using these records. Thus, an ascertained length 

of the records has to be assumed. It is obvious that the greater the length of the signal, the more 



massive the computation procedure will be. Meanwhile, if the time of the strong ground motion would 

be before tl in most of the stations, the consideration of a greater length for the record seems to be 

ineffectual in the inverse solution results. However, is this acceptable? 
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2. THE LINEAR INVERSE SOLUTION FORMULA  
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In faulting process, rupture initiate from hypocenter, then as the propagating rupture sweeps over the 

fault plane, each point traces an individual slip-time history (slip-velocity function) whose shape and 

duration depends on the stress conditions and frictional properties on the fault, but also on overall fault 

size and the position of each point with respect to rupture nucleation. The slip duration (rise time) at 

each point is usually defined by integrating the slip-velocity function and measuring the time it takes 

to complete 5 - 95% of the total displacement at each point (Mai, 2008).In kinematic rupture model, 

rise time, which characterizes the time taken for the offset, is considered to be constant in all point of 

fault plate. Also several simplified source-time function, such as ramp function, are proposed till now 

to use instead of these complicated slip functions. In all earthquake forward and inverse solution, the 

governing equation that relates ground displacement to the motion on the fault is given by a 

representation theorem (Guatteri, et al., 2004) (Hartzell, et al., 2005) which can explain in following 

notation: 

 

  
,( , ) ( , ). . . ( , ; , ).n i ijkl j nk l

S
u x t d u c G x t ds                                    (2.1) 

 

In this equation ( , )nu x t is the nth component of displacement at position x and time t resulting from 

the slip on fault plane. ( , )iu    is the ith component of  the local discontinuity in displacement 

across the fault, is the fault normal vector and ijklc is the Hook's law parameter. Also, ( , ; , )nkG x t    

is the displacement of position x in nth coordinate direction and in time t due to an impulsive point 

load applied at position  in k th coordinate direction and in time  .In addition, , ( , ; , )nk lG x t   is the 

derivative of green function respect to the spatial variables. Now, we want to rewrite equation 1 in 

discrete form in space and time, the fault surface is divided in to a set of finite cells (Fig. 2.1). So, for 

isotropic space we can write: 
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In this equation  nnxu  is the displacement signal in nn th station.  )(tf  
is source time function and 

 is illustrated as convolution product. nmeshis the number of cells on fault surface and
2nnQ  is the 

number of  Gaussian points in one cell.  lun is the slip of  l th cell in n th coordinate direction. 

Finally,   lkxG nnjni ,;,  is the derivative of green function. In this,   ; ,ni nnG x k l is the 

displacement of nn th station in nth coordinate direction due to an impulsive point load applied at k th 

Gaussian point in l th cell  and in i th coordinate  direction. In this equation  nnxu , )(tf  
and 
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  lkxG nnjni ,;,   are strings in time. Unknown parameter in linear inverse solution is a final slip in 

each cell in longitude and lateral direction. Hence, it is necessary to explain  lun  in term of du and su , 

in that s and d indicates strike slip and dip slip. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1.Schematic view of fault that shows the discrete model with cells and two directions of slip on fault. 

 

According to figure 2.1, we can write: 
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       1 2( )n s du l u l e n u l e n          )2.3) 
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For inverse solution and using the records of all stations, the least square method is used. For this 

purpose the following difference between artificial records and actual records in all station should be 

minimized: 
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To minimize the above difference, the partial derivatives of E according to final slip in two directions 

and in all cells have to set to zero: 
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If the number of time sampling is tfn for source time function and tGn  for green function, each of 

equations in Eqn.2.5, for one cell, contains ) tfn + tGn -1) bonds. Therefore, the total number of 

equations becomes nmesh2  ) tfn + tGn -1), whereas  the number of unknown parameters is 

nmesh2 .The Eqn.2.5 can be written in the matrix form: 
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s dAu Bu C           )2.6) 
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As regards the finite number of cells, it seems that there are much more equations than unknowns. 

Nevertheless it is not true. That is, the equations system 2.7 is very impermanent. In other word, the 

lines of this equations system are not independent and the coefficient matrix is singular. Overall, the 

inverse problem in seismology does not have a permanent solution. For having unique and permanent 

solution, it is necessary to add additional information[ (Hartzell & Heaton, 1983), (Das & Kostrov, 

1990), (Das, et al., 1996), (Kostrov & Das, 1988)].  
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3. The EFFECT OF THE CUTTING LENGTH OF THE SIGNAL ON THE INVERSE 

SOLUTION RESULTS  
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The previous section has been closed by an appropriate illustration of the inverse solution principles. 

At the moment, suppose an earthquake and a number of records following that which the inverse 

solution is initiated by the use of these signals. Therefore, a certain length of each signal should be 

taken into consideration. Hence, in continuation, the effect of the cutting length of the signal has been 

investigated. As before said, having a larger signal cutting length, the record’s processing time will 

enlarge and besides, if the time of the strong ground motion in most stations would be before tl, 

assuming a larger length for the records appears to be indifferent while considering the results. 

Though, in the present study, the sensitivity analysis of the inverse solution due to the cutting length of 

the record has been investigated. To smooth the noted progress, an example has been demonstrated. A 

fault with a specific slip has been assumed in this regard and consequently the related dislocation of a 

station has been calculated using the direct solution. Afterwards, the inverse solution has been 

performed considering different and rational lengths for the signal. Finally a comparison of results has 

been presented. 

The Imperial fault of the California state due to the 1979 earthquake has been considered in this work. 

The relevant data base has been offered by Hartzell and Heaton on 1983 in the earthquake data base 

(SRCMOD) (Mai, 2004) which the same data has been employed here. 

The properties of the previously mentioned fault and the modeling and location specifications have 

been presented in Table 3.1. The slips of the fault’s surface have also been denoted in Figure 3.1. The 

smoothed ramp function (second integration of the step function) is supposed as the time function in 

the solution. 

The under investigation space is a one layer half-space which the one layer soil assumption will assist 

the calculation of the green function. It is worth mentioning that the relations of the green function of a 

one layer half-space in the (Johnson, 1974) have been utilized in this study. A presumed station has 

been supposed for the direct solution and record generation. The location of the station is assumed 

(60000, 5000, 0). The resulted signal from direct solution is as shown in Figure 3.2. According to 

these graphs, it is obvious that time of the strong motion is before 33 seconds. Thus, the inverse 

solution has been performed for the 32, 34, 36, 37 and 40 seconds cutting lengths. The contour plot of 

the fault’s surface slips due to inverse solution with different cutting lengths of signal has been 

proposed in Figure 3.3-3.7. The concurrent comparison of the results has also been indicated in 

Figures 3.8 and 3.9. 

 

 

 

 

 

 

 

 
 



Table 3.1. The properties of Imperial Valley Fault and the simulation parameters 

T
h

e 
co

o
rd

in
at

es
 o

f 
fo

u
r 

 

co
rn

er
s 

o
f 

fa
u

lt
(m

) n1 (-1000,0,0) 

n2 (-2.5276e4, 3.3543e4,-1000) 

n3 (-2.5276e4, 3.3543e4,-11500) 

n4 (-11500,0,0) 

  

The length of fault 42000m 

  

The width of fault 10500m 

  

Numbers of elements 4*14 

  

The numbers of gauss points in 

each direction for one cell 
4 

  

The slip filed of fault in us 

direction 

For each cell is according to 

fig.3.1 

  

Source Time Function Smoothed ramp function 

  

Time step 0.1 sec 

  

Rise Time=RT 0.7 sec 

  

The Coordinates of hypo center (-3.9118e3, 5.1911e3,-10500) 

  

The velocity of  crack 

propagation 
2.5     km/s 

 

Figure3.1. The slips of the fault’s surface in each cell in us direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure3.2. The resulted signals from direct solution in assumed station 

 

906.0 060.0 689.0 996.0 993.0 500.0 966.0 05.0 903.0 933.0 608.0 063.0 689.0 003.0 

685.0 388.0 63.0 539.0 539.0 693.0 05.3 33.3 099.3 309.3 963.0 999.0 0 0 

655.0 536.0 985.0 39.0 989.0 338.3 506.3 399.3 8.3 660.0 99.0 363.0 0 0 

066.0 368.0 569.0 595.0 693.3 906.3 933.3 900.3 569.3 503.0 300.0 0 0 0 



 

 

 

 

 

 

 

 

 

 

 

 

Figure3.3. The contour plot of the fault’s surface slips (m) due to inverse solution with 40 sec cutting length. 

(Up in us direction, down in ud direction) 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure3.4. The contour plot of the fault’s surface slips (m) due to inverse solution with 37 sec cutting length. 

(Up in us direction, down in ud direction) 



 

 

 

 

 

 

 

 

 

 
Figure3.5. The contour plot of the fault’s surface slips (m) due to inverse solution with 36 sec cutting length. 

(Up in us direction, down in ud direction) 

 

 

 

 

 

 

 

 

 

 

 

 
Figure3.6. The contour plot of the fault’s surface slips (m) due to inverse solution with 34 sec cutting length. 

(Up in us direction, down in ud direction) 

 



 

 

 

 

 

 

 

 

 

 
Figure3.7. The contour plot of the fault’s surface slips (m) due to inverse solution with 32 sec cutting length. 

(Up in us direction, down in ud direction) 

 

 

 

 

 

 

 

 

 

 
Figure3.8. The concurrent comparison results (slips of 56 cells on fault in us direction) due to inverse solution 

with different cutting lengths of signal.  

 

 

 



 

 
 

 

 

 

 

 

 

 

 

Figure3.9. The concurrent comparison results (slips of 56 cells on fault in ud direction) due to inverse solution 

with different cutting lengths of signal.  

 
 

As it is evident from the contour plots, by the variation of the cutting length in the inverse solution, not 

only the value of fault’s surface slips, but also its pattern will change. Consequently, from these facts it 

could be concluded that the cutting length of the signal is of great import in inverse solution.  

4. CONCLUSION 

The effect of the cutting length of the time history signal on the inverse solution results has been 

investigated through two examples. The most apparent outcome of these analyses is that the cutting 

time of the record is one of the most significant and efficient factors in the inverse solution issue. The 

fact becomes principally distinct while using a large number of stations which is the case of most 

practical approaches. Although, it seems that if the time of the strong ground motion in most stations 

would be before tl, supposing the greater length for the signal will not affect the inverse solution 

results, but as it has been revealed in this article, it will. Thus, the important issue is the required time 

for the propagation of the crack front to all of the fault points and the requisite time for the wave’s 

arrival with minimum velocity to the farthermost station from those which has been included in the 

inverse solution. Nevertheless, if a smaller time extent would be supposed, it will appear as assuming 

fewer constraints in the inverse solution and a consequently a different slip would be achieved for the 

fault’s surface. In conclusion, it could be claimed that the supposed length of the signal is a significant 

factor in inverse solution problems. 
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