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SUMMARY:  

In this paper a modal combination rule for seismic analysis of multiple supported structures is presented. This 

rule allows expressing the structural response as the sum of uncoupled SDOF modal responses yet accounting 

fully for modal response correlation and spatial variation of seismic ground motion. This formulation is an 

extension of the complete Square-Root-of-Sum-of-Squares (c-SRSS) modal combination rule originally 

formulated for structures subjected to a single ground motion. 

 

It is shown that spectral moments can be rigorously expressed as the sum of uncoupled modal responses fully 

accounting for the contributions of the variances and cross-covariances between them. The great advantage of 

this rule is that we can estimate the maximum structural response without approximations that neglect the modal 
response covariances or assuming certain type of ground motions. 
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1. DYNAMIC RESPONSE VARIANCE 
 

Consider a multi-support (MS) linear structural system with n response degrees of freedom subjected 

to m support earthquake ground motions. Assume that the ground motions at the supports of the 
structure are zero-mean jointly stationary random processes and that the duration of the ground 

motions is long enough for the response to reach stationarity. Let i , i  denote the modal frequencies 

and critical damping ratios of the structure, and mktuk ...1 , )(   denote the ground displacement at 

the k
th

 support. A generic response of interest, )(tZ , e.g. internal forces in a member, displacements at 

a node, or stress at a point, in general can be expressed as the sum of a pseudo static and a dynamic 

component. 
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where iky , is the SDOF displacement response of a modal oscillator with natural frequency i  and 

critical damping ratio i  subjected to the ground acceleration )(tuk
 ; ka and ikc , are the effective-

influence coefficients and effective modal participation factors, respectively, which depend on the 

mass and stiffness properties of the structure only (Der Kiureghian and Neuenhofer, 1992). From the 

double sum in the right hand side of (1), we obtain for the spectral density function of the dynamic 

responses Zd ,  
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In which 
lkuuS   is the ground acceleration cross-spectral density,  )()(ReRe ,   jiji HH  and 

 )()(ImIm ,   jiji HH ., and )(iH  is the complex transfer function of the SDOF modal 

oscillators,  
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In general, the cross-spectral density 
lkuuS  is a complex function of frequency, lklkuu QCS

lk ,,   
where the co spectrum lkC ,  and the quadrature spectrum lkQ ,  are even and odd functions of 

frequency, respectively. Taking into account that *
kllk uuuu SS    

and    *)()()()(   ijji HHHH  (where *denotes complex conjugate), Ec. 1.2 becomes: 
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Using partial fractions decomposition Heredia-Zavoni (2011) has expressed )(Re , ji  in terms of the 

square norms of )(iH and )(jH  for deriving the complete SRSS modal combination rule,  
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Factors ,,, ijijij DBA  and ijE

 

 only depend on the modal frequencies i  and the critical damping 

ratios 
i . In terms of ratio 

j

iq



  they are given by, 
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and satisfy jiij DA  , jiij EB  ; for 1q  .0,5.0  ijij BA  For the imaginary part 

 )()(ImIm   jiij HH  we can use the partial fraction expansion in Heredia-Zavoni and 

Vanmarcke, 1994): 
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Factors ijijij DBA ',''   and ijE '  are derived here in terms of ratio 
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These factors also depend only on the modal frequencies and critical damping ratios, and satisfy 

jiij DA ''  , jiij EB ''  . Introducing the response coefficients:  
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and using (8) and (6) in (5) we can show that 
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Power spectral density of the response of a simple beam (Figure 1.1) subjected to horizontal ground 

motion is estimated using both Eqs 1.4 and 1.17, in order to corroborate partial fractions replacement. 
The beam has uniform mass and stiffness properties along its longitude. It is assumed that mass is 

concentrated in two point of the beam and no mass moments of inertia are associated with rotational 

degrees of freedom. The ground motions of the three supports are modeled by the modified Kanai 
Tajimi power spectrum. It is supposed that the ground motion model is the same for the three supports 

of the beam (see properties in table 1.1).  Cross covariance is modeled with a loss of coherency and 

wave passage effect as discussed below.  



 

 

Figure 1.1: Degrees of fredom of beam subjected to seismic ground motion. 

 
Table 1.1 Properties of ground motion in supports 

Type of Soil f  (rad/s) f  g  (rad/s) g  

Soft π 0.2 0.5 0.6 

Stiff 15 0.6 1.5 0.6 

 

Figure 1.2 shows the analytical spectral density of the horizontal displacement of the DOF #1. It can 
be seen that for both soil conditions, the spectral density obtained using the partial fraction expansion 

coincides with the theoretical one. Peaks at frequencies equal to 9.79 and 14.81 rad/s correspond to the 

modal natural frequencies of the structure. Furthermore, for soft soil conditions, the spectral density 
exhibits a peak around the dominant frequency of the soil.  

 

 
(a)       (b) 

Figure 1.2:   Power spectral density of the displacement response in (a) soft soil (b) and stiff soil  

 
 

2. GROUND MOTION CROSS CORRELATION  

 
The normalized ground acceleration cross-spectral density is called the coherency spectrum:  
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Several functional forms for the coherency spectrum have been proposed based on theoretical and 

empirical approaches. Der Kiureghian (1996) proposed a theoretical model based on the superposition 
of incoherence, wave passage and site effects: 
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The first factor in the right side of Eq. 2.2 is a real valued function and models the incoherence effect 

due to the scattering of waves in the heterogeneous medium of the ground and the differential wave 
arriving at each point from different segments of an extended source. The wave passage and site effect 

components are complex functions. The following expression was deduced by Der Kiureghian (1996): 
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Eq.1.4 
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The first term in the right side of Eq. 2.3 represents the random variation of wave amplitudes, the 
second term represents the random variation in phases angles. Based on Uscinski’s (1977) theoretical 

model of shear waves propagating in a random medium, Luco and Wong (1986) derived a function 

similar to the second term in Eq 2.3 with: 
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Where 
Vs

K


2  is a model parameter,  is an incoherence parameter and Vs is the typical shear wave 

velocity of the medium. Notice that this expression satisfies the conditions in 2.4. The random 

variation of amplitudes depends on function It is proposed that: 
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which must satisfy the conditions in 2.5.
.
 The model defined in 2.3, 2.6 and 2.7 satisfy that: (1) has a 

zero slope at the origin, (2) decays from unity at kld =0 or  =0 to a value of zero at kld or 

 . This model was fitted to strong ground motion data from records of two events in Mexico 

City. Table 3 shows the characteristic of the events and the estimated values of K1 and K2 for the 
proposed model. Figures 5 shows the fitted curves with Der Kiureghian models for one event. It is 

observed that the model fits quite well for the Mexico City data over the frequency and separation 

intervals considered. For comparison purposes, figures 3 to 6 also show the fitted curves presented in 
Santa Cruz et al (2000) using coherency models proposed by Hindy and Novak (1980), Luco and 

Wong (1986), Harichandran and Vanmarcke (1986) and Abrahamson (1992).  

 

Results show that for the estimated K2 values, the random variation in phase angles has little influence 

in the computation of 
eincoherenc

luuk
 , since   1)(exp 2

2  kldK for the distance and frequency 

domain analyzed. It suggests that the main contribution to the incoherence effect of ground motion 

comes from the random variation of amplitudes. This result is compatible with previous works that 
show that the Luco and Wong model is not flexible enough over the range of separations considered 

(Santa Cruz et al , 2000). Ignoring the random variation in phase angles we obtain: 
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where 1K  
 5.5 ~7.5 x 10

-4
  

 

The wave passage effect is modeled as a complex function:  
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where V is the propagation velocity of the waves. Pérez Rocha and Chávez-Garcia have reported 

apparent velocity of 2000-2600 ms for very soft soil in Mexico City. The contribution of the site 



effects is modeled as a relation between the real and imaginary part of the product of transfer functions 

of the soil at points k and l as proposed by Der Kiureghian: 
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where Hm  is the frequency response function of the soil column at point m, m=k,l.  
 

 

 

 
estimated Abrahamson

Luco and Wong Hindy and Novak

Harichandran and Vanmarcke Der Kiureghian  
 

Figure 2.1: Event M-1 

 
 

3. RANDOM VIBRATION METHODOLOGY 

 

The variance of the dynamic response is the zero-th spectral moment of 
dd ZZS  expressed in eq. 1.17. 
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where  iklikliklikl ,3,1,2,0 ,,,   are spectral moments of modal responses 
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Eq. 3.1 shows that given the cross power spectrum of support ground motions, computing the dynamic 

response variance can be reduced to the uncoupled analysis of modal responses yet accounting fully 

for cross-modal contributions through coefficients iklikliklikl ',',,   which only depend on 

structural properties. Notice that for a single support, k=l, ikk' = ikk' = ikk,1 = ikk,3 =
kkQ = 0 , kkC ,
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which is the expression for the response variance derived by Heredia-Zavoni (2011). 
 

 

The spectral moments in 3.2 can be interpreted in terms of the response displacements 
kiY  and 

liY  of a 

SDOF modal oscillator with natural frequency, i , damping ratio 
i , to support ground accelerations 

)(tuk
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 . Consider first the cross power spectrum between response displacements 
kiY  and 

liY   
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By definition, the covariance between the response displacements is   
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Since 
2

)(iH  is an even function and considering 3.2, we have that 
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Similarly, the covariance of the velocity responses of a SDOF modal oscillator to ground accelerations 
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It follows from 3.2 that  
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Furthermore, in Heredia-Zavoni and Vanmarcke (1994) it is shown that,  
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Therefore, all of the spectral moments in 3.2 and 3.3 can be interpreted in terms of covariances 

between various modal responses to the support ground accelerations. Let ),( YX  denote the cross-

correlation coefficient between processes X  and Y  . By definition,  
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where )(),(),( kikiki YYY    are the standard deviations of the displacement, velocity and acceleration 

response of the SDOF modal oscillators to ground acceleration )(tuk
 ,  
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Using (25) in (15) we can write the response variance as,   
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The value of  can be estimated using ground cross correlation model in Eqs. 2.8, 2.9 and 2.10. Based 

on Mexican records K1 can vary between 5.5 and 7.5 x10
-4

 and for distances around 500 m the value 

of the incoherence parameter lkc dKt ,1  varies from 0.25 to 0.40 . Wave passage effect parameter 

app

L
lk

p
V

d
t

,
 is around 0.1 and  0.2. If we suppose that the type of soil in the three supports is the 

same, site effects in Eq 13 have no influence in the estimation of correlation. Figures 3.1 and 

3.2present the variation of the correlation 
 
versus the ground period Tf=2f  normalized by the 

modal period Ti=2i  for soft soil. 
 

   

                          (a)                                                             (b)           

Figure 3.1 : Cross correlation between modal displacements and velocity (a)
),( liki YY

 and (b) ),( liki YY  



 

 
                             (a)                                                               (b)           

Figure 3.2: Cross correlation between modal velocity and acceleration (a) ),( liki YY  and (b) ),( liki YY   

 

For deriving a response formulation, it is convenient to express the response variance in terms of 

modal displacement variances,  
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Consider now the characteristic frequencies of the modal response displacements,  
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The characteristic frequencies depend on modal frequencies and damping ratios, and on the ground 

motion input. If the ground motion is assumed to be Gaussian, they are associated with the mean zero-

crossing rates of the modal oscillator displacement and velocity responses. In terms of the 

characteristic frequencies the response variance becomes  
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Noting that for lk   ,  0),(),(  likiliki YYYY    , the response variance can be written as 
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where  
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4. CONCLUSIONS 

 

It has been shown that the dynamic structural response of multi-support systems can be computed 
based on uncoupled response analysis of modal oscillators. The dynamic response has been shown to 

depend on: 1) cross correlation coefficients between modal displacements, velocities and 

accelerations; 2) the first two characteristic frequencies of the modal response displacements; and 3) 
response coefficients that depend solely on modal frequencies and damping. The spatial correlation 

structure of the support ground motions is considered in the solution through the cross correlation 

coefficients. The correlation between modal responses for given support motions is rigorously 
accounted by the response coefficients derived from the partial fractions expansion. No simplifying 

assumption regarding a particular type of ground excitation has been used in deriving the solution in 

3.17. It has also been shown that the response can be expressed in an exact way in terms of the  

contribution from all modal responses to each of the support ground motions individually, in addition 
to the contribution from the cross correlations between support ground motions and n between modal 

responses. 
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