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SUMMARY:
Majority of the hodograph transform solutions of the one-dimensional nonlinear shallow-water
wave equations are obtained through integral transform techniques. This approach, however,
might involve evaluation of elliptic integrals, which are highly singular. Here, we couple the
hodograph transform approach with the classical eigenfunction expansion method rather than
integral transform techniques and present a new analytical model for nonlinear long wave prop-
agation over a plane beach. In contrast to classical initial or boundary value problem solutions,
an initial-boundary value problem solution is formulated. In general, initial wave profile with
nonzero initial velocity distribution is assumed and the flow variables are given in the form of
Fourier-Bessel series. The spatial and temporal variation of the flow quantities, i.e., free-surface
height and depth-averaged velocity, are estimated accurately through the developed method
with much less computational effort compared to the existing integral transform techniques.
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1. INTRODUCTION

The shallow-water wave theory has proved to be a key instrument in analytical modeling
of propagation and runup of long waves such as tsunamis. Among the analytical models
for the nonlinear shallow-water wave (NSW) equations, the solution method of Carrier
and Greenspan (1958) remains quite significant as they introduced the state-of-the-art
hodograph transformation. This transformation has two main advantages. First, it maps
the instantaneous shoreline position in the physical space onto a fixed point in the hodo-
graph space. Second, with this transformation, the nonlinear problem can be reduced
to a linear one, so that the solution in the transform space can be pursued utilizing the
standard methods and can easily be inverted for the nonlinear solution in terms of phys-
ical variables. In spite of these advantages, however, the solution method of Carrier and
Greenspan (1958) could not been benefited for a long time due to the difficulty of pre-
senting results for geophysically meaningful initial wave profiles. While this is resolved by
Synolakis (1987) formulating the solution as boundary value problem (BVP), the complete
initial value problem (IVP) solution in one space dimension for realistic initial waveforms
could only be achieved after late contributions (Carrier et al., 2003; Kânoğlu, 2004).

The common property of the previous studies is the use of integral transform techniques
in obtaining the solutions. To be more specific, Carrier and Greenspan (1958) used the
Hankel integral transform method in their work and thus the solution appeared in the form
of elliptic integrals, which are singular; hence, in order to proceed Carrier and Greenspan
(1958) had to impose regular initial wave profiles. Carrier et al. (2003) improved the
Carrier and Greenspan (1958) solution in terms of initial wave profiles, but unfortunately
they could not avoid elliptic integrals. This forced them to use a linearization of the initial



velocity profile in their calculations. Kânoğlu (2004) adopted the same integral transform
technique, but treated the IVP differently and linearized the hodograph transformation
in order to derive the initial conditions in the transform space which led simpler solution
integrals. Later, Kânoğlu and Synolakis (2006) showed how to incorporate the exact
nonlinear initial velocity condition into the hodograph transform technique.

An alternate analytical solution for the NSW equations is provided by Aydın and Kânoğlu
(2007). Considering a long and shallow bay connected to an infinite-depth ocean, they first
derived an explicit analytical expression for the surface profile in presence of a continuous
wind blowing in seaward direction using hodograph transformation for the spatial variable.
This is called wind set-down. Then, Aydın and Kânoğlu (2007) modeled analytically the
subsequent wave oscillations in the bay after the wind stopped blowing, which is called
the relaxation phase. Their formulation for the relaxation phase led an initial-boundary
value problem (IBVP) for the NSW equations and was suitable for a solution in terms of
a Fourier-Bessel series.

In this study, we follow similar approach and solve the NSW equations, subject to ap-
propriate initial and boundary conditions, with the eigenfunction expansion method. We
consider nonzero initial velocity distribution in general. We test the suggested method
with a wide class of initial wave profiles and we expose that the shoreline dynamics, i.e.,
the temporal variations of the shoreline position and the shoreline velocity, are accurately
estimated, requiring much less computational effort compared to integral transform tech-
niques.

2.MATHEMATICAL FORMULATION

The NSW equations can be written in nondimensional form as

ηt + [(h+ η)u]x = 0, (2.1a)

ut + uux + ηx = 0, (2.1b)

where subscripts denote derivative with respect to the variable. In the equations above
η(x, t) and u(x, t) represent the free surface elevation and the depth-averaged wave veloc-
ity, respectively. The undisturbed water depth is h(x) = x where x (XS(t) ≤ x ≤ XL)
represents the distance from the initial shoreline and t (0 ≤ t) represents the tempo-
ral variable. XS(t) is the location of the shoreline tip. The nondimensional variables
appearing in Eqns. 2.1 are defined to be

x =
x̃

l
, (h, η) =

(h̃, η̃)

l tan β
, u =

ũ√
g l tan β

, t =
t̃√

l/(g tan β)
,

where l, g and β are the characteristic length scale, the gravitational acceleration, and
the beach angle with horizontal, respectively (Fig. 2.1).

We will seek solution for Eqns. 2.1 through the hodograph transformation defined by
(Carrier and Greenspan, 1958)

σ =
√
x+ η, (2.2a)

λ = t− u, (2.2b)

which will replace the independent variables (x, t) with respective auxiliary variables
(σ, λ). Here, it is worth noting that the hodograph transformation maps through Eqn. 2.2a
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Figure 2.1. Definition sketch (not to scale). Note that the dimensional undisturbed water
depth h̃(x̃) = x̃ tanβ becomes h(x) = x in nondimensional form.

the moving shoreline tip (x = −η) in the physical coordinates onto a fixed point (σ = 0)
in the hodograph plane. The relations defined by Eqns. 2.2 transform Eqns. 2.1 into

(σ2u)σ + 2σ(η +
u2

2
)λ = 0, (2.3a)

2σ uλ + (η +
u2

2
)σ = 0, (2.3b)

in the hodograph (σ, λ)-plane. Further defining the function

ϕ = η +
u2

2
, (2.4)

often called the potential of the transformation, it becomes straightforward to combine
Eqns. 2.3 into a single second-order linear differential equation expressed in terms of the
potential function ϕ,

4ϕλλ −
1

σ
(σϕσ)σ = 0. (2.5)

We will define an IBVP governed by Eqn. 2.5 and we will seek solution through separation
of variables method, as in Aydın (2011). This method requires two initial and two bound-
ary conditions. In the most general case, the initial conditions consist of a prescribed
initial wave height distribution, η(x, t = 0) = η0(x), and a corresponding velocity profile,
u(x, t = 0) = u0(x) 6= 0. These conditions are translated into the hodograph plane by
directly substituting the linearized form of Eqn. 2.2a, i.e., x ≈ σ2 (Kânoğlu, 2004). Then,
the initial conditions in the hodograph plane can be expressed as η(σ, λ = λ0) = η0(σ)
and u(σ, λ = λ0) = u0(σ), or more suitably for the present formulation as

ϕ(σ, λ = λ0) = η0(σ) +
u20(σ)

2
≡ P (σ), (2.6a)

ϕλ(σ, λ = λ0) = −u0(σ) +
σu′0(σ)

2
≡ F (σ), (2.6b)



following from Eqn. 2.4 and Eqn. 2.3a, respectively. Here, λ0 = −u0(σ) 6= 0 following
Eqn. 2.2b written at t = 0, since u(x, t = 0) = u0(x) 6= 0. We remark that t = 0 in the
physical space corresponds to λ0 = 0 in the hodograph space in the absence of the initial
velocity.

The boundary condition at the shoreline tip is straightforward: we require the solution
to be bounded everywhere, including the shoreline. For the condition at the seaward
boundary, we adopt ϕσ(σ =

√
XL, λ) = 0 (Given x ≈ σ2, x = XL in the physical space

corresponds to σ =
√
XL = L in the hodograph space). Although this condition results in

wave reflection from the seaward boundary, with appropriate choice of the parameter XL

it will suffice to provide solutions for the shoreline quantities. So, the boundary conditions
in the hodograph plane can be written as

ϕ(σ = 0, λ) = finite, (2.7a)

ϕσ(σ = L, λ) = 0. (2.7b)

The IBVP formulated above is now suitable for a solution by means of separation of
variables. We assume ϕ in the form of ϕ(σ, λ) = S(σ)T (λ). Substituting this into
Eqn. 2.5 and applying the condition given in Eqn. 2.7a, the series expansion for the
potential function becomes

ϕ(σ, λ) = A0 +
∞∑
n=1

J0(2αnσ) [An cos(αnλ) +Bn sin(αnλ)], (2.8)

denoting αn = zn/2L for ease of notation. In the Fourier-Bessel series above J0(•) is
the Bessel function of the first kind of order zero and zn are the zeros of the function
zJ ′0(z) = 0, or zJ1(z) = 0, following from the boundary condition at σ = L, Eqn. 2.7b.
Since the equation zJ1(z) = 0 has a double root at z = 0, Dini’s expansion of order zero
yields an initial constant term in the series above (Bowman, 1958), given by

A0 = 2

∫ L

0

σ P (σ) dσ. (2.9)

To calculate the unknown coefficients (An, Bn) for n ≥ 1 we apply the initial conditions
given in Eqns. 2.6 and solve the resulting matrix equations. The final formulas for An
and Bn become{

An
Bn

}
=

αn
L2 J2

0 (zn)
[

{
αnPn
Fn

}
cos(αnλ0) +

{
−Fn
αnPn

}
sin(αnλ0)], (2.10)

in which {
Pn
Fn

}
=

∫ L

0

σ

{
P (σ)
F (σ)

}
J0(2αnσ) dσ. (2.11)

This completes the solution Eqn. 2.8 of the IBVP defined by Eqns. 2.5-2.7 in the hodo-
graph plane.

The depth-averaged velocity u(σ, λ) follows from Eqn. 2.3b as

u(σ, λ) = − 2

σ

∞∑
n=1

J1(2αnσ) [An sin(αnλ)−Bn cos(αnλ)]. (2.12)



The singularity of Eqn. 2.12 at the shoreline (σ = 0) can easily be handled with the use
of limz→0 J1(ξz)/z = ξ/2, and the shoreline velocity becomes

us(λ) = −2
∞∑
n=1

αn [An sin(αnλ)−Bn cos(αnλ)]. (2.13)

Now that ϕ(σ, λ) and u(σ, λ) are calculated in the hodograph plane, we have the necessary
data to invert the hodograph transformation and express the solution in the physical
variables, i.e., (x, t)-plane. The inversion algorithm is as follows,

η = ϕ− u2

2
, (2.14a)

x = σ2 − η, (2.14b)

t = λ+ u. (2.14c)

Spatial variation at any time t = t∗ or temporal variation at any distance x = x∗ can
be evaluated through the Newton-Raphson iteration scheme (Synolakis, 1987; Kânoğlu,
2004). Moreover, calculation of the temporal variation of the shoreline location is as easy
as substituting σ = 0 in Eqns. 2.14b and 2.14c,

xs(λ) =
u2s(λ)

2
− ϕ(0, λ), (2.15a)

ts(λ) = λ+ us(λ). (2.15b)

3. INITIAL CONDITIONS

In this section, the solution method described above is applied to Gaussian, solitary, and
N -wave type initial wave profiles having nonzero initial velocity in general.

3.1. Gaussian initial waves

A widely used profile in analytical benchmarking of long waves is the so-called Gaussian
wave (single hump). It is described by

η0(x) = h1 e−c1(x−x1)
2

, (3.16)

where the parameters h1, x1, and c1 determine the height, the location, and the steepness
of the initial profile, respectively. An N -wave (plus-minus source) can also be constructed
by combining two Gaussian waves, i.e.,

η0(x) = h1 e−c1(x−x1)
2 − h2 e−c2(x−x2)

2

. (3.17)

Carrier et al. (2003) computed the time evolution of the shoreline position and the shore-
line velocity for initial waves given in Eqns. 3.16 and 3.17 by using the Hankel integral
transform method. Kânoğlu (2004) obtained the same results without having to evaluate
elliptic integrals. Here, we take the initial wave parameters from Carrier et al. (2003), see
Fig. 3.1, and we evaluate the shoreline wave height ηs(t) and the shoreline velocity us(t)
for cases with and without initial velocity (Fig. 3.2). The initial velocity profile is defined
by (Kânoğlu and Synolakis, 2006)
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Figure 3.1. Gaussian initial waves used by Carrier et al. (2003). The initial wave parameters in
each case are as follows; (a) Case 1: h1 = 0.017, c1 = 4.0, x1 = 1.69; (b) Case 2: h1 = −0.017,
c1 = 4.0, x1 = 1.69; (c) Case 3: h1 = 0.02, c1 = 3.5, x1 = 1.5625; h2 = 0.01, c2 = 3.5, x2 = 1.0;
(d) Case 4: h1 = 0.006, c1 = 0.4444, x1 = 4.1209; h2 = 0.018, c2 = 4.0, x2 = 1.6384.

u0(x) = 2
√
x− 2

√
x+ η0(x). (3.18)

We also included results of Kânoğlu (2004) solution for comparison purposes. It should
be noted that the present method required little computational effort even under the
nonlinear initial velocity condition.

3.2. Solitary initial waves

The solitary wave profile is defined by

η0(x) = H sech2 γ(x− x1), (3.19)

with γ =
√

3H/4. H is the initial wave amplitude and x1 is the initial center location of
the wave. The shoreline dynamics for a solitary wave are presented in Fig. 3.3 for zero
and nonzero initial velocity cases.

3.3. N -wave type initial waves

Tadepalli and Synolakis (1994) introduced two dipolar waveforms as more realistic initial
profiles for the surface response of seafloor displacements. The isosceles N -wave profile is
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Figure 3.2. Time variations of the shoreline position, ηs(t) (left panel) and the shoreline
velocity, us(t) (right panel) for the Gaussian initial waves given by Eqns. 3.16 and 3.17. Dashed
and solid lines represent the present solution with and without initial velocity while dots are the
zero initial velocity solution belonging to Kânoğlu (2004). The initial wave parameters for each
case are listed in the caption of Fig. 3.1.
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Figure 3.3. (a) Solitary initial wave defined in Eqn. 3.19 with parameters H = 0.03 and
x1 = 30. (b) The initial velocity distribution given by Eqn. 3.18 (dashed line) versus the zero
initial velocity everywhere (solid line). Time variations of (c) the shoreline position and (d)
the shoreline velocity are plotted for cases with (dashed lines) and without (solid lines) initial
velocity.

defined as

η0(x) =
3
√

3

2
H sech2 γ(x− x1) tanh γ(x− x1), (3.20)

with γ = (3/2)
√
H
√

3/4. This profile produces identical depression and elevation heights

(Fig. 3.4a). Another dipolar profile which produces uneven positive and negative distur-
bances is the so-called generalized N -wave defined by

η0(x) = εH (x− x1) sech2 γ(x− x2), (3.21)

with γ =
√

3H/4. The scaling parameter ε ensures that the initial wave amplitude is H.

The shoreline wave height and the shoreline velocity variations for waveforms defined in
Eqns. 3.20 and 3.21 are presented in Fig. 3.4. Nonzero initial velocity case is compared
with zero initial velocity case. The results suggest that, of the waves having the same
initial amplitude, the generalized N -wave produces higher shoreline wave height compared
to the solitary wave (Compare Fig. 3.4g with Fig. 3.3c). Among the isosceles and the
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Figure 3.4. (a, c) The initial surface profiles and (b, d) the initial velocity distributions
for the N -waves defined in Eqns. 3.20 and 3.21, respectively. The parameters for the isosceles
N -wave, inset (a), are: H = 0.03, x1 = 30. The parameters for the generalized N -wave, inset
(c), are: H = 0.06, x1 = 30, x2 = 29, for which ε = 0.1827. (e-h) Time variations of the
shoreline position and the shoreline velocity for corresponding initial waveforms. Dashed and
solid lines represent the present solution with and without initial velocity, respectively.



generalized N -waves of the same initial elevation amplitude, the former produces higher
shoreline wave height compared to the latter, comparing Fig. 3.4e and 3.4g. This is
consistent with the results of Tadepalli and Synolakis (1994).

4. CONCLUSIONS

Nonlinear propagation of long waves climbing a linearly sloping beach is modeled by com-
bining a fundamental analytical tool, namely the separation of variables method with the
state-of-the-art hodograph transformation. The proposed model handles general initial-
boundary value problem, i.e., a prescribed wave profile with nonzero initial velocity. Ac-
curate estimations for time variations of shoreline wave height and velocity distributions
are obtained for a variety of initial waveforms; hence, compared to integral transform
methods, the proposed model is more flexible in terms of initial conditions. The com-
putational efficiency of the new method is another advantage over the integral transform
solutions. Therefore, it is hoped that the proposed solution can serve as a simple analytical
benchmark solution for long wave numerical models.
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