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SUMMARY: 
Current seismic codes incorporate well-established simplified approaches to protect and mitigate the response of 
structures under extreme events using hysteretic passive devices.  Nevertheless, a systematic and well-establish 
methodology for the topological distribution and properties of these devices in three-dimensional structures does 
not exist.  In this paper, we develop a computational framework to evolve optimal brace configurations for 
complicated three-dimensional regular and irregular structures within a given seismic environment consisting of 
four synthetic ground motions (5% exceedance in 50 years).  Non-linear transient dynamic analyses, based upon 
a Mixed Lagrangian Formulation, are used to evaluate the structures, while the optimization is accomplished 
with a compact Cellular Automata-based Genetic Algorithm.  As a result of the evolutionary process, the 
optimal placement, strength and size of the dampers are obtained for regular and irregular eight-story steel frame 
buildings.  Interesting brace patterns evolve from the discrete optimization process. 
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1. INTRODUCTION 
 
Modern state-of-the-art seismic codes provide well-established approaches for structural design in 
order to prevent collapse and loss of life in extreme events.  Many of these approaches involve 
innovative seismic protection systems that have been developed in the past decades and have been 
extensively validated both numerically and experimentally.  These technologies can be mainly 
categorized into damping and isolation systems.  In the present paper we are interested in studying 
damping systems and more specifically yielding metallic dampers (e.g., Buckling Restrained Braces).  
Yielding metallic passive devices have been used, in the design of new structures as well as in 
retrofitting existing structures, in order for the structures to withstand the expected seismic motion by 
dissipating energy through yielding of steel (e.g., Soong and Dargush, 1997).  Therefore, the amount 
of energy dissipated by these devices is dependent on the yield load.  Moreover, it is a common 
practice that the distribution of these devices throughout the height of structures is based on the elastic 
mode shapes (FEMA-273, 1997; FEMA-274, 1997).  This would be sufficient if the structure 
remained elastic, but since the structures (even with energy dissipative devices) are not expected to 
remain elastic during design and extreme earthquake events, this approach will eventually lead to a 
non-optimal utilization of the passive devices.  Moreover, the distribution of the ductility demand 
throughout the structure is not expected to be uniform.  Therefore, the topological distribution of the 
hysteretic dampers is critical in the overall performance of the structure under seismic loadings. 
 
The passive damper topological distribution problem has been addressed previously by a number of 
researchers, including Zhang and Soong (1992), Gluck et al. (1996), Takewaki (1997), Singh and 
Moreschi (2001, 2002), Moreschi and Singh (2003), Lavan and Levy (2005, 2006), Levy and Lavan 
(2006), Dargush and Sant (2005) and Lavan and Dargush (2009),  In recent work by the present 
authors, a systematic methodology was developed for optimizing the topological distribution and size 
of hysteretic devices in order to achieve a desired response performance for planar structures 



 

(Apostolakis and Dargush, 2010).  In that paper, a computational framework is proposed for the 
optimal distribution and design of yielding metallic buckling restrained braces (BRB) and/or friction 
dampers within steel moment-resisting frames (MRF) for a given seismic environment.  Performance 
objectives relate to satisfying both drift and acceleration criteria.  Non-linear dynamic analysis is 
conducted using DRAIN2D (Prakash, 1993) to assess performance and a simple Genetic Algorithm 
(GA; Holland, 1992) is used to solve the resulting discrete optimization problem.  Specific examples 
involving two three-story, four-bay steel MRFs and a six-story, three-bay steel MRF retrofitted with 
yielding and/or friction braces are considered.  Interestingly, in all cases, the brace configurations 
evolve to form arch-like elements within the overall structure. 
 
What types of brace configurations would evolve in more complicated three-dimensional regular and 
irregular structures?  To answer this question, in the present work, we extend the above approach to 
spatial frames.  The non-linear transient dynamic analysis now is performed using the Mixed 
Lagrangian Formalism (MLF; Sivaselvan and Reinhorn, 2006; Sivaselvan et al., 2009) and the 
optimization is accomplished with a compact Cellular Automata-based Genetic Algorithm (CA-GA; 
Barmpoutis and Dargush, 2007).  The seismic environment consists of four synthetic ground motions 
representative of the west coast of the United States with 5% probability of exceedance in 50 years.  
As a result of the evolutionary process, the optimal placement, strength and size of the dampers are 
obtained for regular three-, eight- and fifteen-story steel frame buildings, along with an irregular 
eight-story structure.  Again, interesting brace patterns evolve from the discrete optimization process.  
In this paper, the focus is on the eight-story structures. 
 
 
2. COMPUTATIONAL FRAMEWORK 
 
A computational framework is proposed for the optimal design of three-dimensional structures with 
hysteretic braces.  The objective is to find a topological distribution and the size and yielding level of 
the devices throughout the height of the structure.  For realistic applications one has to assume all the 
combinations of brace patterns that can be retrofitted to every bay of the structure and a range of 
parameters for the size and yield level of the braces.  As a result, the number of the possible design 
configurations becomes very large and prohibitive to exhaustive search.  Therefore, for the optimal 
design of realistic three-dimensional structures desirable features of the computational framework are 
a numerical method that can provide accurate and efficient non-linear transient dynamic analysis 
results and an optimization approach that can provide a systematic and robust methodology for 
exploiting good solution from a very large search space.  For the former, we use the Mixed 
Lagrangian Formalism (MLF) approach and for the latter we incorporate a compact Cellular 
Automata-based Genetic Algorithm.  The performance of the individual designs is evaluated using a 
fitness function strategy. 
 
2.1.  Mixed Lagrangian Formalism 
 
In this paper non-linear transient dynamic analysis, for the evaluation of the structures, is performed 
using a Mixed Lagrangian Formalism (MLF) approach (Sivaselvan and Reinhorn, 2006).  The weak 
formulation starts with the proper selection of state variables and the construction of Lagrangian L and 
dissipation Φ functions.  In principle, the Lagrangian function includes the conservative 
characteristics of the system, while the dissipation function incorporates the non-conservative aspects.  
Both are functions of the generalized coordinates qk  of the system and their first-order time 
derivatives for k=1, … , n.  The action integral is introduced and by applying Hamilton’s action 
principle (Hamilton, 1834) one arrives at the Euler-Lagrange equations, which are the governing 
equations of the system. 
 
Partitioning the degrees of freedom (DOF) of the structure into those that have associated mass or 
damping, those that do not have mass or damping, and those with prescribed displacement or velocity, 
the governing equations of the structure are (Apostolakis et al., 2011): 
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where Μ is the mass matrix, C is the damping matrix, B is the equilibrium matrix, A is the block 
diagonal matrix of element flexibilities, G is the block diagonal matrix of inverse hardening moduli, F 
is the vector of internal forces in the structure, v is the vector of velocities at DOF with associated 
mass or damping, vo is the vector of velocities at DOF with neither mass nor damping (quasi-static), 
vp is the vector of velocities at DOF with prescribed displacement/velocity, ζ is the vector of internal 
variables (for plasticity, etc.), P is the vector of external forces on DOF with mass or damping, Π is 
the vector of external forces at quasi-static DOF.  When geometric nonlinearities is considered, the 
equilibrium matrix Β is a function of displacement, and is partitioned as Β=[Β1

Τ, Β2
Τ, Β3

Τ]Τ 
corresponding to DOF with mass or damping, quasi-static DOF, and DOF with prescribed 
displacement or velocity, respectively.  The governing equations include the linear momentum 
equation, the deformation compatibility in the elements equation, the equilibrium equation at quasi-
static DOF, and the evolution of constitutive internal variables equation, respectively. 
 
The governing equations obtained by the Lagrangian formalism are solved numerically with a discrete 
variational integrator based on Cadzow’s discrete calculus of variations (Cadzow, 1970).  Starting by 
constructing a discrete Lagrangian Ld, which is an approximation of the continuous Lagrangian L, the 
discrete action sum Sd that corresponds to Ld is constructed, where 
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while Ν is the total number of time–steps and qk represents the discrete value of a state variable at step 
k. 
 
Following Cadzow’s discrete variational calculus, the solution of the discrete system governed by the 
Lagrangian Ld is the one that produces the extreme discrete action sum Sd.  The action integral is 
discretized using the midpoint rule with a time-step h.  It can be shown that if either the internal force 
F or velocity v state variables are eliminated from the above set of discrete equations, then the 
remaining set of equations can be defined as a minimization problem.  The minimization problem, in 
terms of internal force vector F as state variable, can be restated as: 
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where the yield function of the structure φ(.) appears as a constraint.  The minimization problem (3) is 
solved as a sequence of linear equality-constraint problems, where the constraints are represented by 
an augmented Lagrangian approach.  For a detailed presentation of the minimization approach, the 
reader is referred to Sivaselvan et al. (2006, 2009). 
 
The MLF approach has been extended to fully coupled thermoelasticity and poroelasticity 
(Apostolakis, 2010) and a Mixed Lagrangian Formulation for linear thermoelastic response of 
structures has been developed (Apostolakis and Dargush, 2012).  The above can be used to study the 
behavior of structures under thermal loads (fire) and for soil-structure interaction analysis of 
structures.  This will be the matter of interest in future work. 
 
 



 

2.2. Optimization algorithm 
 
Genetic algorithms (GAs) employ a population of solutions as the initial seed and then, with the use 
of stochastic selection, crossover and mutation operators, evolve to produce improving solutions.  
GAs owe their power mainly to selection and crossover operators, while the mutation operator has 
only secondary significance.  The limited role of mutation is evident from the low mutation rates used 
in most GAs.  On the other hand, cellular automata (CA) use localized structures and operators to 
solve problems in an evolutionary way.  In the most interesting cases, CA display a significant ability 
toward self-organization that derives from the local structure.  A new CA-GA framework was 
developed in Barmpoutis and Dargush (2007) to take advantage of these self-organizing 
characteristics of CAs, while retaining the attractive features of the GA evolutionary process.  Within 
this algorithm, which is applied here for the first time in seismic design, every individual of the 
population is assigned to a cell and the number of CA lattice cells is equal to the number of 
individuals in the population.  Then, within this framework, an iteration of the CA corresponds to a 
generation of the GA.  However, the CA-GA approach abandons global statistics that control the 
evolution of the population in a standard GA.  Instead, local rules involving nearest neighbors direct 
the evolution on the lattice.  Further details are provided in Barmpoutis and Dargush (2007). 
 
2.3. Evaluation criteria and fitness function 
 
A fitness function f  is defined, based upon inter-story drifts and absolute accelerations, to direct the 

development of robust design solutions under seismic loading.  Let ( )( )k
i t  and ( )( )k

ia t  represent the 

drift and acceleration, respectively, of the thi  story at time t   for the thk  earthquake.  Then, the 
fitness of the structure for earthquake k  can be written 

1( ) ( )

allow allow

2
max ma| ( ) | | ( ) |x

k

k k
i if

a

t a t



 
 
 




                                            (4) 

where allow  and allowa  represent the allowable levels for drift and acceleration, respectively.  Notice 

that if drifts and accelerations are both at their allowable limits, the fitness function for the earthquake 

equals unity.  Finally, the overall fitness for the structure is defined as the minimum value of kf , 

taken over all of the earthquakes.  Thus, 

 1 2max , , , nf f ff                                                                      (5) 

 
Equations (4) and (5) apply for unconstrained brace topological optimization problems, which permit 
the selection of the maximum number and sizes of braces throughout the structure.  On the other hand, 
when a constraint is introduced on the total number of brace element sets, a penalty formulation is 

used to reduce f  dramatically if this limiting value is exceeded.  For example, let bn  and ,limitbn  

represent the number of brace sets in a given structure and the limiting number, respectively.  Then, 
for the constrained problem, 
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where .  denotes the Macauley bracket function. 

 
 
3. STRUCTURES 
 
The three-dimensional structures considered in the present study are three-, eight- and fifteen-story 
steel frame buildings, along with an irregular eight-story steel frame building.  The floor plan and 
elevation views of the buildings are presented in Fig. 1.  The location of the moment-resisting frames 



 

is in the perimeter of the buildings and it is shown with bold lines in the floor plans.  For the eight-
story irregular building, the floor plan is as shown up to the sixth floor and the shaded area indicates 
the floor plan for the two upper floors.  The column bases in all building are considered as fixed.  All 
the columns in the perimeter moment-resisting frames bend about the strong axis.  The strong axis of 
the gravity columns is assumed to be oriented in the NS direction. 
 

 
Figure 1.  Floor plans and elevation views for the regular eight-, irregular eight- and fifteen-story building 

 
The sections used for the NS direction frames are summarized in Table 1.  In all the cases, the design 
of the moment-resisting frames in EW direction was assumed identical to the ones in the NS direction.  
The design yield strength of the beams is 248 MPa (36 ksi) and for the columns is 344 MPa (50 ksi).  
The seismic mass for the structures is summarized in Table 1. 
 

Table 1.  Column Sections, Beam Sections and Seismic Mass for the Three-Dimensional Buildings 

8-story Regular Building

Story 

NS Moment-Resisting Frames NS Gravity Frames Seismic 
Mass 

(metric 
tonne)

Column 
Beam 

Column 
Beam 

Exterior Interior  

1 W14x370 W14x500 W36x160 W14x193 W21x44 644.839 
2 W14x370 W14x500 W36x160 W14x193 W18x35 633.818 
3 W14x370 W14x500 W36x160 W14x193 W18x35 633.818 
4 W14x370 W14x455 W36x135 W14x145 W18x35 633.818 
5 W14x370 W14x455 W36x135 W14x145 W18x35 633.818 
6 W14x283 W14x370 W36x135 W14x109 W18x35 633.818 
7 W14x283 W14x370 W36x135 W14x109 W18x35 633.818 
8 W14x257 W14x283 W30x99 W14x82 W18x35 682.760 

Note: 1.  The eight-story irregular building has same section properties and seismic mass as the eight story building. 
               For the last two floors assume proportional seismic mass to the floor plan area. 
          2.  For information on the fifteen-story building contact the authors. 

 
 
4. DESIGN APPLICATIONS 
 
The design applications presented in this paper include the regular and irregular eight-story structures.  
The fitness function defined in Section 2.3 above is used with parameters Δallow = 1.5%, αallow = 1.0g.  



 

The first design parameter is a target maximum inter-story drift, taken as the life safety (S-3) 1.5% 
drift limit for braced steel frames from Table C1-3 FEMA-356 (2000).  The second design parameter 
is a target maximum story acceleration of 1.0 g, for non-structural components.  In case studies where 
we assume that X-type brace configurations are available but with a penalty, we assume nb,limit = 5.  
Below the optimization parameters and the seismic environment assumed in the optimization are 
presented. 
 
4.1.  Optimization parameters 
 
In this section, the parameters that will be optimized are established.  For the retrofitted three-
dimensional structures, the optimization parameters are the damper configuration Dconf, the damper 
area Ad, and the damper yielding force Fy,d.  For the design applications presented in this paper a post-
yield ratio of α=10-3 is assumed.  A multi-scale approach is assumed for the damper configuration by 
assuming brace pattern configurations that span 2-by-2 bays.  The possible configuration patterns 
assumed are eight and are shown in Table 2.  The number of values that the damper area Ad, and the 
damper yielding force Fy,d parameters each could take is four, which are summarized in Table 2. 
 

Table 2.  Optimization parameter values and configuration for hysteretic dampers 

Damper parameter values/configuration 

Damper 
Configuration, 

Dconf 
 

(2x2 bays) 

    

    

Area, Ad 1.290E-03  (2) 2.581E-03   (4) 5.161E-03   (8) 1.0323E-02(16) 

Yield force, Fy,d 88.964   (20) 177.929   (40) 355.858   (80) 711.716   (160) 
Note: Units are  [m – kN]            (in parenthesis are the values in  [kips – in.]) 

 
4.2.  Seismic environment 
 
The earthquake environment of the design application was selected from the MCEER synthetic 
ground motions representative of the west coast of the United States.  The MCEER west coast ground 
motions consist of 100 synthetic near fault ground motions.  The 100 ground motions correspond to 
four different return periods of 250, 500, 1000 and 2500 years.  These time histories are the samples 
of a Gaussian process with a spectrum that is based on a physical model, the Specific Barrier Model.  
The Specific Barrier Model was proposed and developed by Papageorgiou and Aki (1983a, b; 1985) 
for the quantitative description of heterogeneous rupture.  It provides a physical description of the 
faulting processes responsible for the generation of high-frequency waves.  The specific barrier model 
has been calibrated by Halldorsson and Papageorgiou (2005) to a strong motion database.  The 5% 
probability of exceedance in 50 years earthquakes (25 EQs) was used as the pool for the seismic 
environment of the design applications.  The earthquakes that were selected were number 10 (EQ10), 
21 (EQ21), 22 (EQ22), and 25 (EQ25).  The same four earthquakes are used for all three structures 
included in the design application study of this paper.  For more information about the earthquakes, 
the reader is referred to Apostolakis (2006) and Wanitkorkul and Filiatrault (2005). 
 
Under realistic conditions the direction of the earthquake is rarely perfectly aligned with one of the 
orthogonal directions of a three-dimensional structure in plan-view.  In order to accommodate for the 
above, the direction of each Earthquake in plan-view with regard to the N-S direction (see Fig. 1) was 
randomly generated.  For earthquakes EQ10, EQ21, EQ22 and EQ25, the resulting direction angles 
were established as 27o, 63o, 78o, 11o, respectively. 
 



 

5. RESULTS 
 
Three case studies are performed for the regular eight-story structure.  In the first case we assume that 
all brace configurations from Table 2 are available during the optimization, in the second case we 
assume that there are not X-type brace configurations available, while in the last case we assume that 
X-type brace configurations are available but with a penalty as defined in Section 2.3. 
 
In Fig. 2, the optimal design solutions for each of the three case studies are shown for the regular 
eight-story structure.  The topological distributions of the braces throughout the height of the structure 
correspond to patterns that are not seen in common practice.  It is observed that X-type brace 
configurations are favored in the bottom half of the structure with bigger sized dampers and high yield 
force levels.  This is explained by the increased height of the first story comparing to the other stories, 
and by the fact that the base structure had maximum drift values appearing at the bottom half of the 
structure.  On the top third of the structure, dampers with lower yield force levels are selected.  This 
can be explained by the fact that the base structure had the peak acceleration values at the top stories.  
As a result, the optimization evolved to a solution that reduces the drifts while controlling and even 
reducing accelerations. 
 

  

 Size Yield

1  
 

2  
 

3  
 

4  
 

All braces No X brace X brace penalty   
Figure 2.  Topology optimization for regular eight-story structure 

 

 
Figure 3.  Base and optimal retrofitted designs response comparison for the regular eight-story structure 



 

The distribution of maximum inter-story drift and maximum acceleration throughout the height of the 
regular eight-story structure for all earthquakes are presented in Fig. 3.  It is observed that all the 
retrofitted design solutions, except for the case with no X-type braces and for EQ3, have drift and 
acceleration values well below the target drift of 1.5% and acceleration of 1g, respectively.  Thus, the 
retrofitted optimal designs satisfy the 1.5% life-safety drift limit while the base structure was close to 
collapse, per FEMA-356 (2000).  The optimization framework proposed in this paper produced 
optimal designs with reduced drifts while reducing accelerations at the same time.  Moreover, the 
optimal designs evolved towards a uniform distribution of drifts and accelerations.  As a result, the 
ductility demand is uniformly distributed throughout the height of the retrofitted structure.  Evidently 
this provides with an optimal utilization of the hysteretic dampers. 
 
For the irregular eight-story structure two case studies are performed.  In the first case we assume that 
there are not X-type brace configurations available (see Table 2), while in the last case we assume that 
X-type brace configurations are available but with a penalty.  In Fig. 4, the optimal design solutions 
for each of the two case studies are shown.  Again, the topological distributions of the braces 
throughout the height of the structure correspond to patterns that are not seen in common practice.  
Similar observations can be made for the bottom half of the structure as for the regular eight-story 
structure optimal designs.  Interestingly, for the irregular eight-story structure it is observed that just 
below the vertical irregularity of the structure the optimal dampers have low yield force levels. While 
for the top two floors high yield force values are selected.  Thus, the optimization evolved into 
solutions that reduce the drift and acceleration by retrofitting with dampers in a way that more stress 
is not added to the structure due to the discontinuity of the floors at the six story level. 
 

 Size Yield 

1  
 

2  
 

3   

4  
 

No X brace X brace penalty    
Figure 4.  Topology optimization for irregular eight-story structure 

 

The distribution of maximum inter-story drift and maximum acceleration throughout the height of the 
irregular eight-story structure for all earthquakes are presented in Fig. 5.  Again, it is observed that for 
all the design solutions, except for the case with no X-type braces and for EQ4, the retrofitted designs 
have drift and acceleration values well below the target drift of 1.5% and acceleration of 1g, 
respectively.  Thus, the retrofitted optimal designs satisfy the 1.5% life-safety drift limit while the 
base structure was close to collapse, per FEMA-356 (2000).  Concluding, the optimization framework 
proposed in this paper produced optimal designs where the drifts were reduced while reducing 
accelerations at the same time.  Again, the optimal designs evolved towards a uniform distribution of 
drifts and accelerations and an optimal utilization of the dampers was achieved. 
 
 

6. SUMMARY 
 

Current seismic codes incorporate well-established simplified approaches to protect and mitigate the 
response of structures under extreme events using hysteretic passive devices.  Nevertheless, a 
systematic and well-establish methodology for the topological distribution and properties of these 
devices in three-dimensional structures does not exist.  In this paper, we develop a computational 
framework to evolve optimal brace configurations for complicated three-dimensional regular and 
irregular structures within a given seismic environment consisting of four synthetic ground motions 
(5% exceedance in 50 years).  Non-linear transient dynamic analyses, based upon a Mixed Lagrangian 
formulation, are used to evaluate the structures, while the optimization is accomplished with a 
compact Cellular Automata-based Genetic Algorithm. 



 

 
Figure 5.  Base and optimal retrofitted designs response comparison for the irregular eight-story structure 

 

The computational framework proposed herein is applied to the retrofit of regular and irregular eight-
story three-dimensional structures.  From the evolutionary process, the optimal placement, strength 
and size of the dampers throughout the height of the structures are obtained.  The topological 
distributions of the braces throughout the height of the structure correspond to patterns that are not 
seen in common practice.  For all the design applications, the optimization resulted in retrofitted 
structures that satisfied the predefined design target drift limit of 1.5% and design target acceleration 
limit of 1.0g.  Therefore, the retrofitted optimal designs satisfy the 1.5% life-safety drift limit while 
the original base structures were close to collapse, per FEMA-356 (2000).  It is noteworthy to mention 
that the optimization framework proposed in this paper produced optimal designs with reduced drifts 
while reducing accelerations at the same time. 
 

From the design applications of this paper, it is recommended that, in order to satisfy the life-safety 
drift limits required by modern code and for optimal utilization of the braces, the retrofitted schemes 
should be based on ductility demand throughout the height of the yielded structure under the 
earthquake environment of interest, rather than on the elastic modes as in common practice.  During 
the evolution of the proposed optimization framework, the optimal designs evolved towards a uniform 
distribution of drifts and accelerations.  The ductility demand is uniformly distributed throughout the 
height of the retrofitted structure, consistent with results in Levy and Lavan (2006), Lavan and 
Dargush (2009) and Apostolakis and Dargush (2010).  Evidently this provides with an optimal 
utilization of the hysteretic dampers.  The proposed computational framework appears to be an 
attractive alternative for the seismic design and retrofit of realistic three-dimensional structures with 
hysteretic passive dampers.  The computational and engineering effort is modest and well within the 
range of typical seismic design firms. 
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