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SUMMARY: 
Seismic protective devices in the form of isolation and supplemental damping devices can be effective means in 
mitigating the seismic responses of structures. The required stiffness and damping values to achieve optimal 
performance depend on the characteristics of structures and ground motions. Instead of using actively controlled 
devices, one can select the passive devices to roughly mimic the behaviour exhibited by active devices. In order 
to achieve this, the structural control of structures with controllable devices needs to be obtained first. However, 
the structural control of nonlinear structures can not be easily conducted due to the difficulties in realistic 
modelling of complex structures and in implementing the control algorithms within the typical finite element 
programs. Utilizing the hybrid simulation, the response of a complex nonlinear structure can be obtained by 
integrating various numerical and physical components or numerical components in different computational 
platforms. Based on this methodology, this study will investigate a seismically protected nonlinear building 
model where the structure is realistically modelled in OpenSees while the seismic protective devices and the 
control algorithm are implemented in Matlab. Through hybrid simulation, the responses and structural control of 
the building are conducted. An equivalent passive stiffness and damping parameter set is obtained for this 
nonlinear building and it shows much improved structural performance. An experimental program is also in 
planning to verify the numerical results and structural performance obtained through hybrid simulation.  
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1. INTRODUCTION 
 
In light of damages of structures observed in past earthquakes, seismic protection strategies are needed 
to retrofit existing structures or to improve the design of new structures. In addition to the traditional 
strengthening/stiffening method, structural control technology can be implemented to improve the 
performance of structures, e.g. adding damping to structure to reduce drift and deformations during the 
seismic response. Structural control technologies are typically classified into the passive, active/hybrid 
and semi-active systems (Housner et al. 1997).  
 
To date, a number of passive systems have been implemented in buildings and other civil engineering 
structures. Two of the most popular approaches are to use supplemental energy dissipation or base 
isolation for vibration reduction and energy dissipation. Most passive seismic protective systems are 
based on the general idea of increasing the damping of structures (Constantinou et al. 1998). Because 



ground motions are stochastic in nature, passive systems might have a limited range of effectiveness. 
Active control systems are more efficient in this regard. However, except for protecting small or light 
weight objects, such as aerospace equipments, the solution on how to deliver large active counter 
forces is needed before wide use of this technology in civil structures. Semi-active systems, such as 
magnetorheological (MR) dampers, include smart mechanical and material components whose 
physical parameters can be modified in real-time through switching or on-off operations (Spencer and 
Nagarajaiah 2003). Due to the variability and use of passive forces, semi-active control is becoming a 
promising technology of seismic hazard mitigation for civil engineering structures.  
 
In order to optimally select the stiffness and damping values for control devices in design, the 
structural control of structures with controllable devices needs to be performed first. However, for 
structures exhibiting nonlinearity, the structural control can not be easily conducted within the typical 
finite element analysis program. Although current FEM programs typically have various elements of 
modelling complex nonlinear structural components and control devices, there is no well established 
approach to apply control algorithms in most existing commercial codes. Instead, the structural 
controls were often conducted on simplified structural models that can be generated in the same 
simulation platform for control algorithms. For example, efforts have been made to develop the 
benchmark problems for several structures to allow for a platform to compare various control 
strategies (Agrawal et al. 2009; Ohtori et al. 2004). Nevertheless, the ability to use advanced and 
realistic structural models in conjunction with structural control is currently lacking, which also limit 
the adoption of structural control.  
 
Hybrid simulation is a method for examining the seismic response of structures using a hybrid model 
comprised of either both physical and numerical sub-structures, or numerical sub-structures only 
(Saouma and Sivaselvan 2008). This alternative way of physical testing or numerical modelling of an 
entire system allows for numerical simulations of complex coupled systems performed separately on 
different computational platforms. In this paper, a novel approach utilizing the hybrid simulation is 
proposed to take advantage of modelling ability of existing finite element software and realize the 
structural control algorithm at the same time. As shown in Figure 1.1, a complex nonlinear structure 
can be modelled in any existing finite element software, such as OpenSees, Abaqus, etc, while the 
structural control devices of viscous fluid dampers, base isolators or MR dampers are simulated in 
other software, such as Matlab, where the control algorithms can be easily formulated and 
implemented using the built-in toolboxes. The main nonlinear structure and the control devices, as two 
substructure parts, can communicate with each other by transferring force and displacement 
information through a platform designed for hybrid simulation: UI-SIMCOR. A nonlinear structure 
equipped with linear fluid dampers, nonlinear fluid dampers or base isolators is studied using the 
hybrid simulation hereafter. The structural control is implemented and the equivalent passive 
parameters are derived. The study verifies the validity of the hybrid numerical simulation scheme in 
efficiently developing seismic protection strategies for nonlinear structures.    
 

 
                                          

Figure 1.1. Hybrid numerical simulation scheme 
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2. HYBRID SIMULATION PLATFORM: UI-SIMCOR 
 
The paper builds on an existing hybrid simulation platform and has implemented changes to enable the 
consideration of nonlinear seismic protective devices. The UI-SIMCOR was originally developed to 
facilitate geographically distributed pseudo-dynamic (PSD) hybrid simulation. It has been widely used 
for PSD hybrid simulation and multi-platform simulation with OpenSees, Matlab, Abaqus, etc (Kwon 
et al. 2008). UI-SIMCOR can control distributed PSD test in several sites. The simulation can be 
either all experiments, combination of experiments and analyses, or all analyses.  
 
The UI-SIMCOR program solves the equation of motion of a dynamic system generated by static 
condensation (Kwon et al. 2007). A portal frame with 16 nodes (plus 2 constrained nodes) and 17 
beam elements shown in Figure 2.1 (a) is used for the purpose of illustration. Lumped masses are 
located at beam column joints and ground acceleration is applied in horizontal direction. There will be 
mass and stiffness matrices with 48 by 48 elements in the equation of motion of the frame. However, 
the structure’s mass and stiffness matrix can be reduced to 6 by 6 using static condensation if the 
stiffness and mass matrices are known, as shown in Figure 2.1 (b). 
 

          
 
          (a) DOFs before condensation                     (b) DOFs after condensation 
 

Figure 2.1. Static condensation of multiple DOF structure 
 
By defining the effective DOFs, which are the DOFs where lumped masses are defined as shown in 
Figure 2.1 (b), the mass matrix is easily formulated. At the same time, the condensed stiffness matrix 
can be determined by applying a pre-specified displacement to each effective DOFs and measuring 
reaction forces as shown in Figure 2.2 (a). For the hybrid simulation of the frame which is divided into 
two segments on two sites or two analysis modules, the initial stiffness of a certain DOF can be 
calculated by applying certain displacement to the segmented structure and take summation of reaction 
forces from each segment of structure as shown in Figure 2.2 (b). The dynamic analysis can then be 
performed for the structure using reduced DOFs. This is very important concept for the application of 
hybrid simulation and testing using UI-SIMCOR. 
 

        

     (a) Sub-structuring with one module                 (b) Sub-structuring with two modules 
 

Figure 2.2. Formulation of stiffness matrix in UI-SIMCOR 



3. MODIFIED INTEGRATION SCHEME FOR NONLIENAR PROTECIVE DEVICES 
 
When nonlinear seismic protective devices (e.g. nonlinear damper) are used for inelastic structures, the 
existing integration algorithms in UI-SIMCOR need to be modified. Since it is an open source 
software, UI-SIMCOR can accommodate different integration schemes that are fit for the hybrid 
simulation of given structure. The α operator-splitting method is written in UI-SIMCOR for solving 
equation of motion and ready to be modified. For the hybrid simulation scheme proposed in Figure 
1.1, it’s convenient to formulate the control devices in Matlab since UI-SIMCOR is also a 
Matlab-based computational platform. The computational elements that model the nonlinear viscous 
dampers and base isolators could be incorporated in the time integration section of UI-SIMCOR 
according to their roles in the equation of motion. The modification to the built-in α operator-splitting 
method is shown in the following to incorporate nonlinear viscous dampers. The base isolators can 
also be incorporated similarly through modifying the integration scheme.  
 
The following derivation is based on a nonlinear N DOF structure equipped with nonlinear dampers on 
each DOF. By setting damper force to be zero, the locations where dampers are installed can be 
adjusted accordingly. The equation of motion of this nonlinear system can be expressed as: 
 

( ) ( ) ( ) ( )dt t t t  Ma f r f                                                                                             (3.1) 

 
where M is the mass matrix, a(t) is the system acceleration vector, fd is the nonlinear damper force 
vector, r(t) is the inelastic structural restoring force vector and f(t) is the external force vector. In α 
operator-splitting method, the numerical solution of Equation (3.1) is obtained by a two-step scheme: 
the predictor step and the corrector step. Knowing the displacement vector dn, velocity vector vn and 
acceleration vector an of previous time step tn, the predictor displacement and velocity vectors of tn+1 
are expressed as: 
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where 2(1 ) / 4    and (1 2 ) / 2    are integration constants. The parameter α controls the 

numerical damping of the method and is equal to 0.05 in this paper. The corrector step yields the true 
solution of displacement and velocity vectors of tn+1: 
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where an+1 is solved from the time discretized form of equation (3.1) as following: 
 

1 1 , 1 1 1 1 1( ) ( ) ( ) 0n n d n n n n n          F a Ma f a r a f                            (3.6) 

 
In general a nonlinear viscous damper can be modeled by: 

( )d

d d d df c v sign v
                                                    (3.7) 

 
where cd is the damping coefficient, vd is the velocity of the nonlinear damper and αd is a constant that 
controls the force-displacement loop of the damper. For a N DOF system including nonlinear viscous 
dampers, the damper forces are in the vector form: 



 

 1 2
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Nakashima et al. (1990) first proposed and implemented the non-iterative α operator-splitting method 
for PSD testing with the approximation of the restoring force rn+1 is: 

 

I I
1 1 1 1 1 1( ) ( )n n n n n n         r d K d r d K d                                    (3.9) 

 

where IK is the initial stiffness. The derivative of Equation (3.6) about an+1 is given by: 
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where the velocity across of the ith nonlinear damper vdi can be related to global velocity vector v 
according to which two DOFs it is installed to. Once F’(an+1) is obtained, Newton’s iteration is applied 
to obtain the converged solution for an+1 
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The displacement and velocity vectors can then be obtained by Equation (3.4) and (3.5) once the 
acceleration vector an+1 is solved. 
 
 
4. VALIDATION OF PROPOSED HYBRID SIMULATION SCHEME 
 
To validate the hybrid simulation scheme proposed above, i.e. modelling the main nonlinear structure 
in OpenSees and modelling the control devices in Matlab, a three story nonlinear frame structure is 
considered as in Figure 4.1. This model is the test structure located in Harbin Institute of Technology, 
which will be used to validate experimentally the hybrid simulation. Detailed description on the model 
can be found in another paper (Ozdagli et al. 2012). The beams and columns in the frame are modelled 
by beam-column elements with bilinear force-displacement material property. The nonlinear viscous 
damper follows the definition of Equation (3.7), and the linear dampers and base isolators are 
modelled by Equation (4.1) and (4.2), respectively. 
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where Z  is the dimensionless hysteretic parameter of Bouc-Wen model which is governed by: 
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The following structural control strategies are adopted to investigate the structural response under 
earthquake excitation: (a) linear viscous dampers are installed between floors; (b) nonlinear viscous 
damper is installed between the first floor of the structure and outside fixture; and (c) base isolators are 
installed on the structure at the base level. Figure 4.1 illustrates the above control strategies for the 
structure to be analyzed. In implementing the hybrid simulation scheme for this structure, two 
effective DOFs are selected corresponding to each floor (6 DOFs in total). The equation of motion is 
solved with the modified integration algorithm in UI-SIMCOR described in section 3. 
 

                                                                     

 (a) With linear viscous dampers   (b) With nonlinear viscous damper       (c) With base isolation   
 

Figure 4.1.  Structural control strategies for numerical simulation 

 
The 1940 El-Centro earthquake record is used as the input ground motion for all the analysis reported 
here. The dynamic structural response from the hybrid simulation is compared with that of the whole 
OpenSee model, which both main structure and control devices are modelled in OpenSees. The 
comparisons of the first story displacements from both methods are shown in Figure 4.2. It is seen that 
the proposed hybrid simulation scheme results in almost the same solution as the whole model in 
OpenSees, therefore, it’s correct and reliable for the further application of advanced structural control 
strategies. Figure 4.3a also shows the column responses when linear dampers are used where 
nonlinearity in structure can be observed. Figure 4.3b shows the force-displacement loop of the 
nonlinear damper. It again shows that the hybrid simulation yields same component responses as 
computed in the complete OpenSees model. It is noted that the advantages of hybrid simulation 
scheme implemented here are to take advantage of advanced existing finite element analysis programs 
to realistically simulate the responses of nonlinear structures.     
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     (a) Linear viscous damper        (b) Nonlinear viscous damper           (c) Base isolation 

 
Figure 4.2.  Displacement history of 1st floor of different control strategies 
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(a) 1st floor column reaction of control strategy (a)  (b) Single nonlinear damper of control strategy (b) 
 

Figure 4.3.  Force displacement loop of hybrid simulation model 
 
 
5. IMPLEMENTATION OF STRUCTURAL CONTROL WITH HYBRID SIMULATION 
 
In the hybrid simulation scheme stated above, the control devices are modeled separately in Matlab 
and control algorithms can be applied for the design of their parameters. A three-storey (3DOF) shear 
building model excited by earthquake motion is numerically analyzed (shown in Figure 5.1) and the 
active structural control is implemented using LQR theory. The goal is to obtain the stiffness and 
damping coefficients of the passive devices added to the structure that can provide the response 
reduction effect most close to that of active control method. 
 

                                                           

         Whole model         Main structure in OpenSees     Control devices in Matlab 
 

Figure 5.1.  Numerical example of structural with hybrid simulation 
 
5.1 Classical linear optimal control theory (LQR) 
 
In classical linear optimal control, the control force u(t) is chosen in such a way that a performance 
index J is minimized: 
 

 dtttttJ
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TT ))Ru((u))Qz((z                                          (5.1) 

 
where z vector is the structural response in state space, Q and R are referred to as weighting matrices, 
whose magnitudes are assigned according to the relative importance attached to the state variables and 
control forces. The equation of motion with control forces applied in state space is: 
 



)Hf()Bu()Az()(z tttt                                                 (5.2) 
 
where A is system matrix. B and H are location matrices specifying, respectively, the locations of the 
control forces and external excitations in the state space. f(t) is a vector representing external 
excitation. The optimal control force is given by: 
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The gain matrix G is given by: 
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and P   is the solution of Ricatti equation: 
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5.2 Equivalent optimal passive control approximation 
 
Equivalent optimal passive control theory uses LQR method in active control theory to design linear 
passive stiffness and damping devices (Gluck et al. 1996). The design is aimed at minimizing the 
difference between the control force from active control theory and those for passive control devices. 
By considering displacement and velocity feedback, both stiffness and damping devices are designed. 
 
As stated in section 5.1, the active control forces are obtained as 
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where the gain matrix G  are decomposed to two sub-matrices xG  and xG   which correspond to 

the stiffness and damping information for the control devices. 
 
If the same control forces are supplied by passive devices and they are denoted by 
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where xK   and  xC    are the matrices containing the stiffness and damping coefficients of the passive 

devices. Intuitively, the elements in  xK   and  xC    could be derived by elements in  xG  and xG  . 
 
Applying the least square approximation to the difference between Equation (5.6) and (5.7), the 
stiffness and damping parameters of the diagonal control devices, ik  and ic , can be determined 

by the following two approximation approaches.  
 
(1) The response spectrum approach. It includes the influence of all or several modes of vibration 
relevant. In applications involving structures in earthquakes, sometimes only one mode of vibration is 
relevant. Then the control device design are governed by 
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where   is the mass normalized modal shapes. ,ij dg  and 

,ij d
g   are elements in the transformation 

form of gain matrix in terms of interstory drift by multiplying the gain matrix with a transformation 
matrix T:  
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(2) Truncation approach. This is a much more simplified formulation obtained if only a single gain 
factor in gain matrix of active control is considered. Design parameters can be obtained directly from 
truncating all off-diagonal terms in the transformation form of gain matrix in terms of interstory drift. 
In such case 
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5.3 Numerical results 

 

A sample earthquake excitation (the 1940 El Centro record) is selected to conduct the time history 
analysis of structure equipped with the designed supplemental stiffness and damping. The relative 
displacement and total acceleration time histories are shown for different floors in Figure 5.2 and 5.3 
respectively. It is seen that the optimal passive control designs result in much better structural 
responses in terms of relative displacement and total acceleration than the uncontrolled case. Single 
mode design achieves close control effect as that of truncation design.  
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                 (a) Floor drift                              (b) Absolute acceleration 

 
Figure 5.2.  Response history of 1st floor with different control designs 
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                  (a) Floor drift                             (b) Absolute acceleration 
                                

Figure 5.3.  Response history of top floor with different control designs 
 



6. CONCLUSIONS 
 
This paper explores using the hybrid simulation to conduct structural control of nonlinear structures so 
as to derive the optimal passive stiffness and damping values to mimic the actively controlled devices. 
In order to achieve this objective, existing hybrid simulation software (UI-SIMCOR) is adopted and 
modified to enable the integration algorithm to include nonlinear seismic protective devices such as 
nonlinear dampers and base isolation devices. While the realistic behavior of nonlinear structures can 
be modeled separately in current finite element analysis software package (e.g. OpenSees, Abaqus 
etc.), the nonlinear seismic protective devices can be modeled in Matlab and pieced together through 
hybrid simulation to produce the overall structural responses. The control algorithms can also be 
implemented under this framework. Using a real test structure equipped with various protection 
devices, the paper demonstrated the accuracy and versatility of hybrid simulation. Furthermore, this 
leads to the easy application of different control algorithms that can yield the optimal selection of 
stiffness and damping values for control devices in design. 
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