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SUMMARY:  
 
A new framework for evaluating seismic vulnerability classes at urban scale on a building basis is proposed in 
this paper. The proposed methodology utilizes the capabilities of remote sensing techniques combined with 
information from in-situ evaluation by expert of a small percentage of buildings. The end scope is an estimated 
vulnerability map classifying all the buildings according to the EMS98 vulnerability classes, providing initial 
information to decision support system for seismic risk in the context of vulnerability assessment. We tested the 
methodology in the city of Grenoble (France), using only 2 building attributes from remote sensing: roof type 
and building height (extracted from a very high resolution image, and an 1-m-resolution digital elevation model). 
Results show that with only these 2 attributes it is difficult to classify the building in the 4 existing classes. 
However using two classes (merging EMS98 classes A and B and classes C and D) give satisfactory results. 
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1. INTRODUCTION 
 
Assessment of building seismic vulnerability, such as an urban spatial information basis, can provide 
an important guide for decision-makers to develop mitigation strategies. In addition it can help to raise 
public awareness of risks in the forefront of an expected disaster. Vulnerability can be defined by a 
mixture of different components including physical, demographic, social, economic, ecological and 
political aspects. For seismic vulnerability assessment, several methodologies have been developed 
depending on the resources and the scale of assessment. Most of methods developed for assessment at 
the urban scale (e.g., HAZUS, GNDT or RiskUE methods) were calibrated on post-seismic 
observations. Building vulnerability matrix were defined, by crossing some building attributes (e.g., 
material type, building location and foundation, age of construction, type of roof, plan regularity, 
elevation regularity, position of the structure in the block)  and the damage level observed for a given 
ground motion intensity (e.g., macroseismic intensity). In order to assess the seismic vulnerability at 
urban scale is due to the variability of the building characteristics, and the number of buildings 
concerned that may require important resources.  
 
The development of fast and automatic methods for collecting building attributes involved in seismic 
vulnerability is of major importance. For that,  remote sensing can be an effective tool for providing 
automatically building attributes that can be be used for seismic vulnerability studies in a large space 
within urban areas. For instance, Mueller et al. (2008) gave example of potentials of remote sensing 
contribution to the identification of physical parameters of the buildings used for vulnerability. Valero  
et al. (2008) focused on the estimate of the nature of the roof for each building by using remote 
sensing data. Polli et al. (2009) in a recent work attempt extraction of required parameters through 
analysis of very high resolution remote sensing images. 
 
In situ visual analysis of buildings can be tedious work in large scale areas, while remote sensing can 
provide faster and cheaper solutions. . A lot of different parameters are taken into account in order to 
assess seismic vulnerability. That is why there is not any potential for RS to substitute existing, 



available, vulnerability assessment methodologies, but there is strong potential for supporting and 
providing faster as well as smarter solutions for specific building attributes.  Combining In-situ data 
with remote sensing data can be an efficient solution for improving the seismic vulnerability study.  
The motivation of this paper arises from the combination of in-situ data and information from remote 
sensing. A non linear support vector classification, is applied using in-situ and remote sensed data. 
Classification of seismic vulnerability classes according to the the standard EMS98 is applied in 
buildings with in-situ data calculated by method VULNERALP (Gueguen et al. 2007) tested in 
Grenoble (France). Based on remote sensed data and corresponding in-situ measurements the use of 
support vector machines generates a relation between them, which can subsequently be used to 
classify unknown building vulnerability classes from additional remote sensing data. 
 
The general framework we propose is presenting in Figure1. Section 2 presents SVM classification. 
The data sets and the feature extraction are presented in Section 3 The experimental results are given 
in Section 4. We conclude in Section 5. 
 

 
 

Figure 1.The general flowchart of the proposed methodology is described in the above figure. The first step 
includes the extraction of relevant attributes from remote sensing data and the second step applies support vector 

classification. 
 
 
2.METHODOLOGY 
 
Within a supervised classification framework, we use a support vector machines (SVM) statistical 
learning algorithm to label the buildings according to the desired EMS98 standard for seismic 
vulnerability classes. We assume the existence of a relation between remote sensed data and in-situ 
seismic vulnerability data. Based on this relation we adapt a supervised classification scheme based on 
SVM to classify the seismic vulnerability over the buildings.  The availability of a VHR imagery 
allows us a fine resolution on a building basis analysis on an urban area. We assume features related 
with seismic vulnerability extracted from remote sensed data (roof type and building height) described 
in Section 3.2. A pixel is related by a feature/vector ℜ∈d

ix where each component corresponds to a 
particular extracted feature, d  represents the number of different features extracted from remote 
sensing. Seismic vulnerability classes  correspond to values iy . Given a set of training samples 
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i yx 1),( with known corresponding seismic vulnerability classes, SVM generates an 

approximation of the relation between the remote sensing data )( d
ix  with the corresponding seismic 

vulnerability class iy . We build a supervised SVM classification model (Burges, 1998) such that it 

accurately classify the outputs y corresponding to a new set of input examples djxd
j ≠, . 

 
Since SVMs are covered in a large number of recent papers, we give a brief introduction to SVMs, for 
a more systematic description interested readers may refer to Christianini et al.(2000), Burges (1998) 
and Vapnik (1995). 
 
 
 



Linear SVMs 
 
For simplicity , we consider a supervised binary classification problem. Let us assume that the training 
set consists )...,2,1( nixd

i =ℜ∈ . Each vector d
ix  is associated with a target { }1,1 +−ℜ∈iy . The 

linear SVM classification aims of finding the hyperplane that maximizes the margin (i.e the distance to 
the closest training data points in both classes). The hyperplane pH is defined as: 

pHxbxw ∈∀=+⋅ ,0  (2.1) 

where dw ℜ∈  defined as is a vector normal to the hyperplane, ℜ∈b  is a bias and xw ⋅ is the dot 
product between w and x . If pHx∉ then 0)( =+⋅= bxwxf is the distance from x to the 
hyperplane. Therefore such as hyperplane has to be define according to:   

],1[,1)( Nibxwy ii ∈∀>+⋅  (2.2) 

Also the optimal hyperplane has to maximize the margin: w/2 which leads to the criterion of error 

minimization: 
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For non-linearly separable data, slack variablesξ are introduced and Eq. (2.2) becomes: 
],1[,0,1)( Nibxwy iiii ∈∀>−>+⋅ ξξ  (2.4) 

which leads to the final optimization problem: 
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where C constant controls penalty errors. The final equation leads to a quadratic programming solution 
(Vapnil, 1995).  
The membership decision rule is based on the sign function and the classification is done by 

)sgn( bxwy newnew +⋅=  where ),( bw are the hyperplane parameters found during the training process 
and newx  is an unseen sample. 
 
Multiclass SVMs 
 
SVM are intrinsically binary classifiers but for remote sensing several classes are usually of interest. 
Different multiclass classification strategies can be adopted C.W.Hsu et al. (2002). In our experiments 
we adapt the pairwise classification to solve an m-class problem.   

The pairwise classification is the case where 
2

)1( −mm
 binary classifiers are applied on each pair of 

classes. Each sample is assigned to the class getting the highest number of votes. A vote is defined for 
each class as a classifier assigning the pattern to that class.  
 
Nonlinear SVMs 
 
Kernel methods are a generalization of SVMS providing nonlinear hyperplanes and thus improving 
classification abilities. 
Input data are mapped into a higher dimensional spaceΗ by using a nonlinear functionΦ  such as: 
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                                                                       (2.6) 
The expensive computation of )()( ji xx Φ⋅Φ in Η is reduced using the kernel trick Scholkopf et al. 
(2005)   
 

),()()( jiji xxKxx =Φ⋅Φ                                                                                                                  (2.7)      

    The selection of kernel K has to satisfy the Mercer's condition (Burges, 1998). There exist several 
choices of kernel function K. In this work we test and present the SVM classification using Gaussian 
kernels. 

)exp(),(
2

jiji xxxxGaussK −−= γ                                                                                                 (2.8) 

The tuning of the SVM requires some parameters (kernel parameter , constant C that controls 
penalty errors)  to be well fitted before we run the algorithm. 

 
3. DATA SETS AND FEATURES FROM REMOTE SENSING  
 
3.1.Data set  
 
For several years, Grenoble has been as a test site for estimating regional and local risk, since is one of 
the most high risk cities in French Alps region because of the number of inhabitants, the economic 
activity, the presence of high-tech companies and industrial facilies (chemical and nuclear). Those 
reasons and the availability of in-situ and remote sensing data motivated the development and 
validation of this methodology over Grenoble.  
The available remote sensing data sets include a very high resolution (VHR) orthorectified 
panchromatic image (airborne data, 25 cm resolution) and a digital elevation model (DEM) (airborne 
acquisition, 1m resolution in three dimensions). These two modalities are used to provide related 
vulnerability attributes. The available in-situ data includes building footprints and seismic 
vulnerability class according to the vulnerability EMS-98 standard. The EMS98 classes in Grenoble 
were defined using visual inspection of existing buildings and following the Grenoble Building 
Typology defined for the Vulneralp project (Gueguen et al., 2007; Michel et al., 2012).  Fig3.1 shows 
the test area of Grenoble, where in Fig3.1 (a) we present the location of the test area in the city of 
Grenoble  and in Fig3.1 (b) we show the small area we focused on (test area) with the available 
seismic classes per building and in the background the VHR image. The test area chosen because it 
shows a mix of buildings typologies representative of the Grenoble metropolitan area. Table3.1 shows 
the number of buildings in each seismic vulnerability class in the test area presented in Fig3.1(b).   
 
Table 3.1. Number of buildings for the four seismic vulnerability classes (A,B,C,D) found in the in situ data in 
the test area of Grenoble  (see Fig.3.1) 
Seismic Vulnerability 
class(EMS 98) 

ClassA ClassB ClassC ClassD SUM 

Buildings Number 125 233 86 40 484 
 
 

 



               
                                                                                                                                                                           

(a)                                                                                             (b) 
Figure 3.1. (a) The figure shows the location of the test area, in red, located within the city of Grenoble. The 
pink area correspond to the administrative limits of the city of Grenoble (156. 000 inhabitants) and the grey 
polygons are building footprints of the Grenobe metropolitan area (500.000 inhabitants). Rivers or small lakes 
are in blue. (b) VHR orthoimage with available footprints and corresponding in situ data. The colorbar 
represents the different seismic vulnerability classes according to the EMS98 standard (class A, class B, class C, 
class D) and they represent the in situ information provided by the experts.  The area represents a small area of 
the Grenoble city. 
 
3.2. Feature extraction from remote sensing 
 
In this section we introduce the attributes  extracted from remote sensing. For this study two different 
features related with seismic vulnerability were selected:  
1) Roof type: To identify the roof of the building we implement  the methodology described in Valero 
et al. (2008).  The aim here is to discriminate between flat roofs and gable by fusing VHR 
panchromatic image and DEM and by using available building footprints.  
 

                               
(a)                                                                                             (b) 

Figure 3.2. (a) In-situ data available for the roof. Brown colour correspond to gable roofs and green to flat. (b) 



Classification results after implementing the methodology described in Valero et al. (2008). Yellow colour 
corresponds to miss classification cases.  

 
2)Building Height: The height of the building is calculated by using the DEM and the building 
footprints. We estimate the ground level from the pixels of the DEM that are outside building 
footprints and each building height correspond to the difference between the ground level and the 
average median of the elevation of the pixels inside of each building footprint. All the features are 
calculated on a building  base. 
 

       
                                                                                        

Figure 3.3. Height calculation by using the digital elevation model as described above. 
 
 
Table 3.2. Probability table between remote sensing features (height and roof) extracted as described in Section 
3.2 and in-situ data (seismic vulnerability classes) all over the test area of Grenoble. 

Elevation Roof  P(A) P(B) P(C) P(D) 
Between 3-8 m Flat 0.2500 0.2500 0.1667 0.3333 

Gable 0.3067 0.3067 0 0.1250 
Between 8-11 m Flat 0 0 0.0202 0.3733 

Gable 0.2586 0.3485 0.6267 0.0603 
Between 11-42 Flat  0 0 0.6267 0.3733 

Gable 0.2586 0.4224 0.2586 0.0603 
 
Correction on the building footprints has been applied by using erosion to the individual building 
footprints. Roof identification and building height selected to be extracted from remote sensing.  
In order to implement the above methodology (roof type and building height extraction) the building 
footprints are needed. Techniques for extracting building foot-prints using remote sensing are mainly 
based on edge and line primitives detection from optical image LIU et al. (2005) is not a trivial work 
and it is beyond the scope of this paper.  In our case we used building footprints extracted from a GIS 
vector data base  IGN, BDTOPO. (2009). 
 We evaluate the performance of the roof classification using available in-situ data. Those two features 
can be calculated fast and with a satisfactory accuracy by implementing several techniques according 
with the availability of the remote sensing data. Finally in Table3.2 we present the probability table 
between remote sensing features extracted as described above and seismic vulnerability classes 
(A,B,C,D) available from insitu data by the experts. Elevation and Roof values correspond to all of the 
buildings in the test area shown in Figure3.2(b). Probabilities )(),(),(),( DPCPBPAP  are 
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TN is the total number of buildings. Using the information extracted from remote sensing we continue 
to the classification scheme and our experiments. 
 
 
4.CLASSIFICATION SCHEME AND EXPERIMENTS 
 
After feature extraction from remote sensing  we execute SVM. We generated separate training and 
testing data (training data are not included in testing data). We use the following notation: trn  is the 

training number of buildings, and ten is the number of testing buildings. ℜ∈d
ix denotes the feature 

vector extracted from remote sensing, trni ,...,1∈ and 2,1∈d , where d represents the number of the 
extracted features (roof, height) and  ℜ∈iy , trni ,...,1∈ correspond to the in-situ seismic 
vulnerability class. The SVMs were computed using SVM and kernel methods Matlab toolbox (Canu 
et all, 2005), and the program was modified to include cross validation. During the training process the 
kernel parameter adjusted to maximize the overall accuracy, which was computed using 5-fold Cross 
validation. The experiments were repeated ten times (with ten independent training subsets) and the 
mean accuracy values were reported. 
For the classification experiments we used 2=d , and tested using different training buildings: 

4,260,347,87,130,17 43 22,=trn .  (example: for 5% as training samples we have 22=trn  and 
412=ten , see Table3.1 total size of available building is 434).   

 
Table 4.1. Classification accuracies in percentage for several training set size  

Accuracy Vs 
training buildings 

5% 10% 20% 30% 40% 60% 80% 

OA 55.97 58.53 60.47 60.27 61.17 61.66 62.50 
Kappa 29.14 32.43 34.81 34.44 35.59 35.96 36.86 

 
Table 4.1 summarizes the results obtained using the Gaussian kernel. These values extracted from the 
confusion matrix. The overall accuracy (OA) is the percentage of correctly classified pixels. Kappa 
coefficient is another criterion classically used in remote sensing classification to measure the degree 
of agreement. It is the percentage agreement corrected by the level of agreement that could be 
expected due to chance (Fauvel, 2007). The classification accuracies are between 55.97 for 5% to 
62.50 for 80% of training data set.  
 
Table 4.2. Confusion matrix for classification of the seismic vulnerability classes A,B,C,D (EMS98) over 
theGrenoble test area using remote sensing and 10% of in-situ data 

               
              
Insitu 
data 

                                             SVM classification using remote sensing data Commission 
error % 

 Class D Class C Class B Class A Sum  
Class D 9 21 5 1 36 75.00% 
Class C 11 53 11 2 77 31.17% 
Class B 2 6 181 20 209 13.40% 
Class A 1 1 99 11 112 90.18% 
Sum  23 81 296 34 434  
Omission 
error % 

60.87% 34.57% 38.85% 67.65%  Overall 
Accuracy 
58.53% 

 



 
Table4.2 presents the confusion matrix by 10% of training data set where the OA is 58.53%. The 
differences between the data provided by experts (in-situ)  and the SVM classification using remote 
sensing data and 10% of training data are quantified using commission error, defined as the percentage 
of buildings incorrectly assigned to each damage grade, and, omission error, defined as the percentage 
of buildings incorrectly omitted from each vulnerability class. Considering the errors for each 
vulnerability class, class B and class C shows the smallest errors with commission errors 13.40%, 
31.17% respectively and omission errors 38.85%,  34.57% . However the commission and omission 
errors for the other classes are significantly increased, especially for Class A with commission error of 
90.18% (i.e. 90.18% of the buildings identified in Class A were not in Class A) and an omission error 
of 67.65% (i.e. 67.65% of the actual buildings in class A were classified in other classes). Those 
results indicates the difficulty to distinguish buildings with high vulnerability class by using only roof 
and height from remote sensing . Additionally comparing the number of buildings in class A (11 for 
remote sensing vs. 113 from in-situ data) it shows that remote sensing observations underestimate the 
numbers of buildings belong in Class A. This result is due to the fact that very vulnerable buildings 
belong in class A may not be visible from the aerial view of the remote sensing data by using only the 
roof and the height information.  
 
Table 4.3. Confusion matrix for classification by merging seismic vulnerability (EMS98) class A with B and 
class C with D over the area of Grenoble using remote sensing and 10% of in-situ data 

              
     Insitu 
data 

                       SVM classification using 
                        remote sensing data 

SUM Commission 
error % 

 Class D&C Class B&A   
Class D&C 94 19 113 16.81% 
Class B&A 10 311 321 3.11% 
SUM 104 330 434  
Ommission 
Error % 

9.61% 5.75%  Overall 
Accuracy 
93.32% 

 
If the data are combined such that classA and Class B are combined into a single category and classC 
and Class D in another category, the overall accuracy increase to 93.32% an the commission and 
omission errors are with less value at 3.11% and maximum at 16.8% as shown in Table 4.3. The 
Table3.1 shows the classification accuracies after merging the data into two classes using different 
training buildings. 
 
Table 3.1. Classification accuracies in percentage for several training set size after merging class A with B and 
class C with D  

Accuracy Vs 
training buil. 

5% 10% 20% 30% 40% 60% 80% 

OA 91.97 93.32 93.28 93.22 93.47 94.30 94.79 
Kappa 78.64% 82.19% 82.24% 82.02% 82.86% 84.86% 86.30% 

 
The area of Grenoble has been tested using SVM classification and extracting roof and height from 
remote sensing data. The availability of the ground truth by the experts offered a great way to evaluate 
this methodology quantitative (section 3) and qualitative (section 4).  
 
 
5.CONCLUSIONS 
 
Primary results using only two attributes from remote sensing (roof type and building height) are 
encouraging and support vector machine classification appears to be promising. The high correlation 
between remote sensing features and in-situ data has a strong impact on support vector classification 
performance. An investigation to further improve our results includes the use other possible features 



extracted by remote sensing (such as the volume of the building, area, age, material, building 
irregularity) and analyze their contribution. Future work will include also the extension of our 
methodology in the vulnerability assessment in homogeneous areas based on the existing results in a 
building basis.  
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