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SUMMARY: 

This paper aims at investigating the effectiveness of using linear multiple tuned mass dampers (MTMD) to 

improve performance of tall reinforced concrete structures with nonlinear behavior. A new analytical approach 

was developed for seismic control of reinforced concrete structures in the inelastic range of deformations. The 

effect of inelasticity on structural stiffness is discussed along with the procedure employed in formulating local 

stiffness matrix. Important aspects of inelastic response are presented in terms of member-end springs 

incorporating post yield behavior, and hysteretic models introducing inelastic member stiffness under reversed 

cyclic loading caused by seismic excitations. Placement of the multiple TMDs is studied to give the best 

structural performance. Numerical simulations are performed to study the energy responses of structures with 

and without TMD installed. The optimization of placement of the multiple TMDs is considered by two different 

criteria: i) maximum of the peak structural displacement and ii) average Hysteretic dissipated energy. 
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1. INTRODUCTION 
 

Tuned mass damper is a passive vibration control device that is widely used to reduce the dynamic 

response of the structure. The main parameters of the TMD which are considered by designers are 

tuning ratio, mass ratio and damping ratio whereas the tuning ratio which shows the ratio of TMD 

period to the building period is more important than others. Many researches in elastic domain have 

been carried out to survey TMD sensitivity to the earthquake. The investigation by Villaverde and 

Koyoama showed a weakness of TMD. They expressed that TMD affects only on the building 

performance while the earthquake record is limited to the narrow band frequency and long duration 

(Villaverde and Koyama 1993). To overcome this weakness, researchers have suggested using MTMD 

instead of TMD (Jangid 1999, Abé and Fujino 1994). In inelastic domain Wong and Johnson showed 

that performance of a building equipped with TMD is very sensitive to the earthquake vibration 

characteristics (Wong and Johnson 2009). It should be mentioned that most researchers have 

considered the elastic response of structures and the researchers whose researches are related to the 

inelastic behavior of structures, published their research in the last few years (Wong and Harris 2010, 

Wong and Johnson 2009). Reviewing the recent researches shows that most buildings investigated are 

the steel structures with medium height and elasto-plastic behavior whereas the concrete structures 

with inelastic behavior were not paid attention to very much. Sgobba and Marano obtained optimum 

parameters of linear tuned mass dampers just for a single degree of freedom concrete structure with 

nonlinear behavior (Sgobba and Marano 2010). In the present research, the performance improvement 

of tall reinforced concrete buildings has been investigated while the structural elements are allowed for 

developing into the inelastic behavior base on Takeda hysteretic model. 

 
 

2. EQUATION OF MOTION 

 



The equation of motion of a structural system with n degrees of freedom with TMD is expressed in 

Eqn. 2.1 (Shooshtari 2005): 
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Where M ,C  and K  are mass, damping and stiffness matrices, respectively and x&& , x&  and x  are 

presented as response acceleration, velocity and displacement, respectively. The ground acceleration is 

denoted by )(txg
&&  and and E  is a vector representing the degree of freedom in which the ground 

excitation is applied.  To solve Eqn. 2.1, one can change it to the state-space form which is shown in 

Eqn 2.2: 

 

)()()( txBtAZtZ gr
&&& +=                                                                                          (2.2) 

 

Where 

 









=

x

x
tZ

&
)( ;  








=

x

x
tZ

&&

&
& )( ;   








=

−
EM

Br 1

0
;    









−−
=

−−
CMKM

I
A

11

0
                              (2.3) 

 

The dynamic response of structures by solution Eqn. 2.2 is obtained as follows: 
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Where T is a matrix whose columns are eigenvectors of matrix A  and 
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The stiffness matrix, K  in Eqn. 2.3 remains constant for all steps of time and is not suitable for the 

investigation of inelastic response. During inelastic response, the structural stiffness changes as 

inelastic deformations are generated due to element yielding. This is modelled by means of rotational 

springs introduced at the ends of elements. Therefore, another approach is needed to accommodate 

yielding in the system and corresponding changes in stiffness K  in each step of time. Matrix )(tS  is 

introduced for this purpose (Shooshtari 2005): 
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The solution for Eqn. 2.7 can be expressed as indicated in Eqn. 2.10: 
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Where T is a matrix whose columns are eigenvectors of matrix A  and; 
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3. ELEMENT STIFFNESS MATRIX 

 

When bending moment at the end of a flexural member reaches yield moment yM , the member 

develops inelasticity. Subsequently, a plastic hinge is created within this region whose properties can 

be represented by a rotational spring. Typically, a frame member is modeled by two springs, one at 

each end. This is shown in Fig. 3.1: 

 

ak
bk

 
 

Figure 3.1. Inelastic springs at member ends 

 

Where ak  and bk  are spring stiffnesses at member ends. During elastic response, spring stiffnesses are 

assigned an infinitely large value so that inelastic deformations are prevented. Upon yielding, the 

springs are assigned their appropriate values and rotate, developing inelastic deformations. The 

stiffness matrix is expressed as follows (Holzer 1985): 
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Assuming a constant post-yield stiffness, consistent with the assumption of bi-linear primary moment-

rotation relationship, a fraction of the initial elastic stiffness may be assigned to the post-yield 

stiffness. This ratio is defined as “c”, as shown in Fig. 3.2. Takeda hysteretic model was employed in 

the current research (Takeda et al. 1970). 
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Figure 3.2.  Relationship between member-end moment and chord angle before and after yielding. 

 

 

4. STRUCTURAL MODEL 

 

Three twenty-story moment resistance frames are considered in this investigation. As shown in Fig. 

4.1, each frame is 80 meters high by 18 meters wide consisting of three equal bays. All frames are two 

dimensional R.C buildings whose member sizes as well as rebar reinforcement are presented at Table 

4.1. 

 
Table 4. 1. Specifications of Structural Elements 

Story 
Beam Section (mm^2) and 

Reinforcement 

Column Section (mm^2) and Reinforcement 

Interior Column Exterior Column 

1 ~ 5 
400*500 

3#25 top  ,  2#25 bottom 

600*600 

16#25 

500*500 

12#25 

6 ~ 7 
400*500 

2#25 top , 2#20 bottom 

600*600 

16#25 

500*500 

12#20 

8 ~ 10 
400*500 

2#25 top  , 2#20 bottom 

600*600 

12#25 

500*500 

12#20 

11 
300*500 

3#20 top  ,  2#20 bottom 

600*600 

12#25 

400*400 

8#20 

12 ~ 15 
300*500 

3#20 top  ,  2#20 bottom 

500*500 

12#20 

400*400 

8#20 

16 ~ 20 
300*400 

2#20 top  ,   2#20 bottom 

400*400 

12#20 

400*400 

8#20 

 

The difference of these three frames is in the location of TMDs as shown in Fig. 4.1. In Case 1, the 

frame is equipped with only one TMD the mass of which is 7% of the frame mass and is located at the 

roof. In Case 2, two TMDs are used; one is located at the roof and the other one is installed at the 10
th
 

floor but the total mass of two TMDs is the same as that in Case 1; 7% of the building mass. In Case 3; 

14 TMDs are installed from 7
th
 floor to roof whereas their total mass is equal to the previous cases. All 

beams in three cases except the roof beams are subjected to 29 kN/m uniform gravity loads, including 

dead and live load whereas the uniform loads of the roof beams are 14 kN/m.  

 

The fundamental period of vibration of twenty-story frame without TMD is 4.96 second and the tuning 

period of each TMD is set to be equal to the fundamental period of buildings. All frames are subjected 
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to the Kobe earthquake record which is shown in Fig. 4.2. The damping ratio of frames as well as the 

damping ratio of each TMD is set to 5% and it is assumed that all TMDs remain in linear behaviour 

during earthquake vibration. 

 
 

 

                                    Case 1                                               Case 2                                              Case 3 

 

Figure 4.1.  Twenty-story moment resistance frame showing location of  TMDs 
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Figure 4. 1. Kobe earthquake record, Japan. 

 

 

5. RESULTS 

 

Three frames which were described in the previous section were analyzed to compare their 

performance. The first criterion which should be considered is the maximum lateral displacement of 

floors. Fig. 5.1 shows the maximum lateral displacement of each case compared with the lateral 

displacement of the frame without TMD. To have better idea about the performance of these three 

cases, Fig. 5.2 is presented which shows the displacement of all three cases just in one figure. 

 

 
                              Case 1                                                   Case 2                                                    Case 3 

 

  Figure 5.1.Comparing maximum lateral displacement in three cases. 

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0 5 10 15 20 25 30 35 40

S
to

ry

Displacement (cm)

case 3 with TMD

case 1 with TMD

case 2 with TMD

without TMD

 
 

                                             Figure 5.2.Comparing maximum lateral displacement for all cases 

 

The second criterion which can show the performance of TMD is the total hysteretic dissipated energy 

in structure due to earthquake vibration. The total amount of that energy as well as the percentage of 
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increasing/decreasing of both criteria is presented in Table 5.1 through Table 5.3. 

 

 

 
Table 5.1.Maximum of Lateral Displacement and Plastic Energy Dissipation for case 1 

Maximum of With TMD Without TMD Percent of Increase Percent of Decrease 

Lateral Displacement (m) 0.305 0.316 - 4.7% 

Total Plastic Energy dissipation (KJ) 464.77 502.51 - 7.5% 

 
Table 5.2.Maximum of Lateral Displacement and Plastic Energy Dissipation for case 2 

Maximum of With TMD Without TMD Percent of Increase Percent of Decrease 

Lateral Displacement (m) 0.312 0.316 - 3.5% 

Total Plastic Energy dissipation (KJ) 456.33 502.51 - 9.2% 

 
Table 5.3.Maximum of Lateral Displacement and Plastic Energy Dissipation for case 3 

Maximum of With TMD Without TMD Percent of Increase Percent of Decrease 

Lateral Displacement (m) 0.304 0.316 - 3.8% 

Total Plastic Energy dissipation (KJ) 467.40 502.51 - 7.0% 

 

 

6. CONCLUSION 
 

In this research, the performance of three tall concrete buildings is considered. The difference of these 

cases is just in the location of TMDs. Based on the presented results one can conclude that using 

TMDs can create a reduction in the lateral displacement. However, the amount of the reduction is not 

significant, but the results show that using just one TMD in the roof has better performance compared 

with the other cases. These results also indicate that the main purpose of using TMDs is to reduce the 

plastic energy dissipation which causes the buildings to have better performance in earthquake event.  

 

At the bottom line, it should be mentioned that the main advantage of this research is to consider 

inelastic behavior of R.C. buildings which has not paid attention to much. 
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