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SUMMARY:

It is essential to employ accurate capacity curve in the performance based design to reach more reliable results
on the seismic assessment of reinforced concrete structures. However, the response of shear vulnerable members
such as shear wall, spandrel beams, short columns etc. are diverse from those of ductile flexural members. An
analytical study is accomplished to account the shear behavior of the members correctly in the existing computer
program of DOC3D by means of the newly developed beam-column element. The new flexibility based beam-
column element capable of flexure-shear interaction accounting geometrical and material nonlinearity is
presented. It is based on cantilever type base element and employs distributed plasticity. The end flexibility
terms are determined by summing rotational and transversal deflection differences between successive points by
using the developed recurrence relations. Shear-flexure interaction used in the beam-column element is based on
the study of Mergos and Kappos (2008) in which an empirical relationship is proposed for evaluating the average
shear distortion of reinforced concrete columns at the onset of stirrup yielding. The proposed beam-column
element is validated via the envelopes of the experimental results involving reinforced concrete columns
subjected to cyclic loading.
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1. INTRODUCTION

Past devastating earthquakes showed that old reinforced concrete buildings built without ductile
design requirements and/or low concrete compressive strength were collapsed or heavily damaged.
The most dangerous collapse mechanism is related to shear which occurs sudden without flexural
yielding because of insufficient shear strength. The previous experimental studies exhibited that shear
span ratio (as=L¢/h), which is defined as the ratio of shear span to column depth for a cantilever
column, is the main indicative for the failure type. Shear failure mode is dominated when o < 2.5 and
the member is classified as short column. If o, increases from 2.5 to 5, the flexure-shear interaction is
observed. Greater values of o correspond to flexural type failure mode (Ceresa et al., 2008).

The evaluation of existing building’s performance under seismic loads is still achieved typically by
accounting only flexural type response of the members. The shear-flexural interaction might be
imported for some sorts of elements such as short columns or shear vulnerable members. To represent
shear-flexural interaction, Guner and Vecchio (2010) were developed an analysis procedure using
distributed stress field model (Vecchio and Collins 2000) inherently and accurately account for shear
related effects coupled with axial and flexural mechanisms in nonlinear frame behavior. The flexure-
shear interaction is a popular subject among researchers in recent years. Xu and Zhang (2011)
presented a hysteretic model consists of a flexure and a shear spring coupled at element level in which
shear-flexure interaction is considered both at section and element level. Ceresa et al. (2008)
developed a flexure-shear model for seismic analysis of RC framed structures according to the
Modified Compression Field Theory (Vecchio and Collins, 1986). An enhanced fiber stiffness based



element is formulated by Martinelli (2008) to model the effects of shear-flexure interaction in
reinforced concrete elements subjected to cycling loading.

In this study, a beam-column element is introduced to be account for both flexural and shear
deformations within spread plasticity based on the Timoshenko Beam Theory. In this context, the
cantilever type base element is divided into meshes and bending and shear rigidities are updated at the
middle of each sub-element. The flexibility terms are determined by summing rotational and
transversal displacement differences between successive points by using the developed recurrence
relations, Yuksel (1998) and Yuksel and Karadogan (2009). The geometric type nonlinearity is taken
into consideration in the element level. Shear-flexure interaction used in the beam-column element is
based on the studies of Mergos and Kappos (2008, 2010) in which an empirical relationship is
proposed for evaluating the average shear distortion of reinforced concrete columns at the onset of
stirrup yielding.

The proposed beam-column element is validated against the envelopes of the experimental results of
reinforced concrete columns subjected to cyclic loading.

2. BEAM COLUMN ELEMENT

To analyze nonlinear response of the structures consisting of beam-column elements, a new flexibility
based beam column element is presented. The improved primary element accounts for both flexural
and shear responses and their interaction. The mathematical model of beam-column element is based
on Timoshenko Beam Theory in which plane sections remain plane but neutral axis does not
perpendicular to section.

The cantilever type base element with the unknowns (X; and X>) at right end is demonstrated in Fig.
2.1. The length of the element is L and the general load arrangement is distributed.
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Figure 2.1. Beam-Column Element and the flexibility terms

To consider the spread plasticity through the base element, the beam-column element is divided into m
segments whose lengths are AL=L/m (Fig.2.2). The n™ segment has three coordinates defined as left,
middle and right points (X/,, Xm, and Xr, ) and has flexural and shear rigidities of EI, and GF, which
are identified at the mid of the segment.
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Figure 2.2. Meshed base element



2.1. Flexibility Terms

The flexibility terms identified as f; is determined by summing rotational and transversal displacement
differences calculated for sequential segments from virtual work principle. In the definition of f,
subscript i define deformation of i freedom and subscript j stands for the load condition causing the
deformation. In this context, X;=1 case is used to determine the flexibility terms of f; and f51; X>=1
case is used to determine the flexibility terms of fi, and f3,. and distributed load exposed to system
yields the flexibility terms of fiy and f5o. General integral equations of virtual work principle are given

below:

f~=j.Mj(x)'MH(X)dx+‘L[Tj(x)'fg(x)dx

Voo EI) ) GF(x) o
UM M) T T

fzj_! EI(x) x! GF(x) .

where, M, and M, are virtual moment diagrams, 7, and 7, are virtual shear diagrams to be used in

the calculation of rotation and transversal displacement at the right points, Fig.2.3. Moment diagram
M; and shear diagram 7} are associated with the ™ load condition. To account geometric nonlinearity,
the moment and shear diagrams are updated in each load step till the flexibility terms approach a
unique value between the successive steps. If one converts above integral equations into discrete
parts, the flexibility terms can be defined as the sum of rotational and transversal displacement
differences as given below:

. ZZAQ‘/ fa ZZA@/
i=1 i=1 (2.3)

where, A@; and A, are the rotational and transversal displacement differences at i mesh for ;”
loading condition. In order to calculate A@;, unit moments exposed to boundaries of i* mesh; if A5, is
required, unit forces at opposite directions should be applied to the boundaries as shown in Fig. 2.3.
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Figure 2.3. Virtual force and moment-shear diagrams for calculating rotation and displacement differences

The application of the load conditions are revealed in Fig. 2.4. As seen from the figure, the moment
and shear diagrams M;and T; (j=0,1,2) is divided into /" and 2" order counterparts by M; = My, + M,
and T; = Ty + T,;. The moment and shear diagrams My, T); correspond to 1* order analysis, while M,
and 7,; correspond to geometric nonlinearity.
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Figure 2.4. Moment and shear diagrams for different loading cases

Once the diagrams are formed, the moments and shears are vectored for each loading condition
(G=0,1,2) at (m+1) nodes as given below:

Jay 7}(1)
J2) Je2)
M=l L=l
Jem) Jom 2.4)
Jm+1y | L o)

The flexibility term f;; consists of 2" order flexural and shear responses, hence f; = fi v + f; r. Where,

fii m 1s the contribution of flexural responses, while fjj r corresponds to shear counterpart. The flexural
flexibility terms are listed in Table 2.1.

Table 2.1. Flexural flexibility terms
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The flexibility terms related to shear are listed in Table 2.2.

Table 2.2. Flexural terms related to shear
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2.2. ELEMENT RIGIDITY MATRIX

Once flexibility matrix [f] is attained, stiffness matrix is calculated as follows:

i E] e B

The complete element stiffness matrix is obtained by using the equilibrium equations on the beam-
column element, Fig. 2.5.
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Figure 2.5. The degree of freedoms of local axis system

3. MATERIAL NONLINEARITY

The moment-curvature relations are created by an improved sectional analysis program. The program
can take into account Mander unconfined-confined concrete models (Mander et al. 1988) and bilinear-
parabolic strain hardening model. Once the moment curvature relation is obtained, linearization
procedure using secant stiffness is employed as shown in Fig. 3.1.
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Figure 3.1. Secant stiffness method

Shear-flexure interaction used in the beam-column element is based on the studies of Mergos and
Kappos (2008, 2010). According to these studies, shear force-shear distortion envelope is created due
to current curvature ductility demand (). If current ductility pis smaller than 3, there is no
interaction between shear and flexure and capacity curve is bilinear with cracking and ultimate points
as shown in Fig. 3.2. Whereby, V., V, and V, corresponds to cracking, flexural yielding and ultimate
shear strengths (yielding of transverse reinforcement); v.., Yy, and y, are related shear distortions,



respectively. GAy is initial shear stiffness, GA; post cracking stiffness for un-degraded case. This is
the case when shear response dominates the behavior over flexure such as short beams, link beams,
etc. For increasing curvature ductility demands (u>3), shear strength reduces as shown in the figure
on the right. The shear forces V,-3, V=7 and V ;5 corresponds to ductility demands p=3, p=7, u=15;
Yu=3, Yu=7 and y,-1s are related shear distortions, respectively. If ductility is between 3 and 7, the post-
cracking stiffness (GA;) reduces to GA,; and for 7<u<15, GA, reduces to GA;. For other cases post
cracking stiffness is equal to GA,.

The cracking strength is given by Sezen and Moehle (2004) as follows:

V — ﬁ’lm 1+ N

TOLIR fon A,

x 4,
3.1)

Where, f.m is the mean concrete tensile strength, N is compressive axial load, Ly/h is shear span ratio
and A, is gross sectional area. G is the elastic shear modulus. Ay=0.8A, is the effective area to take
into account a parabolic shear stress distribution along the depth of the cross section. Then the
cracking shear distortion is calculated by y.. = V.. / GA,.
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Figure 3.2. Shear distortion-shear force envelopes

The ultimate shear strength is given by Priestley et al. (1994) with the following formula:

Aw.fw.(d—d’)cotﬁ
Vuzk'erN-tanaJr > . (3.2)

where, f. concrete compressive strength; A, is transverse reinforcement area; f, is transverse
reinforcement yield strength; 6 is the angle defined by the column axis and the direction of the
diagonal compression struts and regression analysis show that it can be taken to be equal to 35°; d - d'
is the distance measured parallel to the applied shear between the centers of longitudinal
reinforcement; s is spacing of transverse reinforcement; o is the angle between the column axis and the
line joining the centers of the flexural compression zones at the top and bottom of the column. The
factor £ is a parameter depending on the curvature ductility demand as shown in Fig. 3.3.

The ultimate shear distortion is estimated using the truss analogy approach proposed by Park and
Paulay (1975) and Kowalsky et al. (1995) and calculated with following formula:

+ 2+ : 3
E -A, -cotd” E, -b-sin@ -cos@-cotd

v, A,f, cotf S 1
Vo = GAO s

(3.3)
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Figure 3.3. k factors

Where, E is steel elasticity modulus, E. is concrete elasticity modulus and b is width of the cross
section. Mergos and Kappos (2008) proposed two modification factors to account for axial load and
column aspect ratio for deriving ultimate shear distortion. The first modification factor, x, takes into
account the influence of the axial load and is given by:

k=1-1.03-v v=N/(4,-1.) (3.4)

The second modification factor, A, represents the influence of the column aspect ratio and is given by
the following expression:

,1=5.41—1.13-(£Jz1
h (3.5)

Then, the resulted ultimate shear distortion is given by:
Vi =K-A Y (3.6)

The implementation of shear-flexure interaction is shown in Fig. 3.4. Herein, the dashed line
corresponds to un-degraded case and ¥; is the shear force at i analysis step at which flexural yielding
was occurred before. The shear force difference (4V) is the difference between V; and V... The term
AdegV. is the difference between the V,y and the ultimate shear strength (V) derived from the current
curvature ductility. Once AV and AdegV. are obtained, A4y; and hence effective shear rigidity (GA.y) at
the next analysis step can be calculated as Eq. 3.7.
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Figure 3.4. Implementation of shear-flexure interaction



AV +Adeg/V, 4
Ayy=——7—- GA, =-L
GA, Ty (3.7)

4. EXPERIMENTAL VERIFICATION

To verify the accuracy of the developed algorithm, two column specimens which were exposed to
cyclic loading were used. The first example demonstrates shear-flexure behavior, while the collapse
mechanism of the second one is shear.

4.1. Flexure-Shear Critical Example

The flexure-shear critical column example were taken from Lynn et al.(1996). The column has
dimensions of 457x457 mm as shown in Fig. 4.1 and has a height of 1473 mm. Hence, the shear span
ratio is Ly/h=3.22.
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Figure 4.1. The cross section of flexure-shear critical specimen

The axial load is 503 kN which is the 6% of the column compressive strength. The concrete
compressive strength is 41 MPa, yield strength of longitudinal reinforcement (f;) is 331 MPa, the
ultimate strength of longitudinal reinforcement is (f;,) 496 MPa, the yield strength of transverse
reinforcement (f,,,) is 400 Mpa. The section consists of eight longitudinal bars having a diameter of
25.4 mm. Diameter of the lateral reinforcement is 9.53 mm.

Two pushover analyses with developed algorithm were performed and the obtained top displacement
vs. base shear force relation compared with experimental hysteresis, Fig. 4.2. The red curve
corresponds to the analysis in which flexure-shear interaction is considered whereas the black one is
the result of the analysis in which only flexural type deformation accounted.
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Figure 4.2. The comparison of experiment and numerical results



4.2- Shear Critical Example
The flexure-shear critical column example were taken from Abouteha et al.(1999). The column has
dimensions of 457x914 mm as shown in Fig. 4.3 and has a height of 1219 mm. Hence, the shear span

ratio is Ly/h=1.33.
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Figure 4.3. The cross section of shear critical specimen

There exists no axial load on the specimen. The concrete compressive strength is 16 MPa, yield
strength of longitudinal reinforcement (f,;) is 434 MPa, the ultimate strength of longitudinal
reinforcement is (f;,) 690 MPa, the yield strength of transverse reinforcement (f;,) is 400 MPa. The
section consists of sixteen longitudinal bars having a diameter of 25.4 mm and transversal
reinforcement of 9.53 mm in diameter.

Two pushover analyses with developed algorithm were performed and the obtained top displacement
vs. base shear force relation is compared with the experimental hysteresis, Fig. 4.4. The red curve is
the result of the analysis in which flexure-shear interaction is considered whereas the black one
corresponds to the analysis in which only flexural deformation is taken into account.
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Figure 4.4. The comparison of experiment and numerical results

5. CONCLUSIONS

A flexibility based beam-column element capable of flexure-shear interaction accounting geometrical
and material nonlinearity is presented. The proposed beam-column element is validated against the
envelopes of the experimental results involving reinforced concrete columns subjected to cyclic
loading. The consequence of flexural-shear interaction has been understood clearly in the obtained
response curves. In the flexural-shear critical example (Ly/h=3.22), the initial stiffness and the ultimate
loading capacity are well estimated; there is some gap in pre-yielding stiffness. In the shear critical
example (Ly/h=1.33), although the ultimate loading capacity are well estimated, there is certain gap in
pre-yielding stiffness.
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