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SUMMARY: 
It is essential to employ accurate capacity curve in the performance based design to reach more reliable results 
on the seismic assessment of reinforced concrete structures. However, the response of shear vulnerable members 
such as shear wall, spandrel beams, short columns etc. are diverse from those of ductile flexural members. An 
analytical study is accomplished to account the shear behavior of the members correctly in the existing computer 
program of DOC3D by means of the newly developed beam-column element. The new flexibility based beam-
column element capable of flexure-shear interaction accounting geometrical and material nonlinearity is 
presented. It is based on cantilever type base element and employs distributed plasticity. The end flexibility 
terms are determined by summing rotational and transversal deflection differences between successive points by 
using the developed recurrence relations. Shear-flexure interaction used in the beam-column element is based on 
the study of Mergos and Kappos (2008) in which an empirical relationship is proposed for evaluating the average 
shear distortion of reinforced concrete columns at the onset of stirrup yielding. The proposed beam-column 
element is validated via the envelopes of the experimental results involving reinforced concrete columns 
subjected to cyclic loading. 
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1. INTRODUCTION 
 
Past devastating earthquakes showed that old reinforced concrete buildings built without ductile 
design requirements and/or low concrete compressive strength were collapsed or heavily damaged. 
The most dangerous collapse mechanism is related to shear which occurs sudden without flexural 
yielding because of insufficient shear strength. The previous experimental studies exhibited that shear 
span ratio (s=Ls/h), which is defined as the ratio of shear span to column depth for a cantilever 
column, is the main indicative for the failure type. Shear failure mode is dominated when s < 2.5 and 
the member is classified as short column. If s increases from 2.5 to 5, the flexure-shear interaction is 
observed. Greater values of s correspond to flexural type failure mode (Ceresa et al., 2008). 
 
The evaluation of existing building’s performance under seismic loads is still achieved typically by 
accounting only flexural type response of the members. The shear-flexural interaction might be 
imported for some sorts of elements such as short columns or shear vulnerable members. To represent 
shear-flexural interaction, Guner and Vecchio (2010) were developed an analysis procedure using 
distributed stress field model (Vecchio and Collins 2000) inherently and accurately account for shear 
related effects coupled with axial and flexural mechanisms in nonlinear frame behavior. The flexure-
shear interaction is a popular subject among researchers in recent years. Xu and Zhang (2011) 
presented a hysteretic model consists of a flexure and a shear spring coupled at element level in which 
shear-flexure interaction is considered both at section and element level. Ceresa et al. (2008) 
developed a flexure-shear model for seismic analysis of RC framed structures according to the 
Modified Compression Field Theory (Vecchio and Collins, 1986). An enhanced fiber stiffness based 
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2.1. Flexibility Terms 
 
The flexibility terms identified as fij is determined by summing rotational and transversal displacement 
differences calculated for sequential segments from virtual work principle. In the definition of fij, 
subscript i define deformation of ith freedom and subscript j stands for the load condition causing the 
deformation. In this context, X1=1 case is used to determine the flexibility terms of f11 and f21; X2=1 
case is used to determine the flexibility terms of f12 and f22; and distributed load exposed to system 
yields the flexibility terms of f10 and f20. General integral equations of virtual work principle are given 
below: 
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where, M  and  M  are virtual moment diagrams, T  and T  are virtual shear diagrams to be used in 
the calculation of rotation and transversal displacement at the right points, Fig.2.3.  Moment diagram 
Mj and shear diagram Tj are associated with the jth load condition. To account geometric nonlinearity, 
the moment and shear diagrams are updated in each load step till the flexibility terms approach a 
unique value between the successive steps.  If one converts above integral equations into discrete 
parts, the flexibility terms can be defined as the sum of rotational and transversal displacement 
differences as given below: 
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where, ij and ij are the rotational and transversal displacement differences at ith mesh for jth 
loading condition. In order to calculate ij, unit moments exposed to boundaries of ith mesh; if ij is 
required, unit forces at opposite directions should be applied to the boundaries as shown in Fig. 2.3. 

 

  
Figure 2.3. Virtual force and moment-shear diagrams for calculating rotation and displacement differences 

 
The application of the load conditions are revealed in Fig. 2.4. As seen from the figure, the moment 
and shear diagrams Mj and Tj (j=0,1,2)  is divided into 1st and 2nd order counterparts by Mj = M0j + Mpj  
and Tj = T0j + Tpj.  The moment and shear diagrams M0j, T0j correspond to 1st order analysis, while Mpj 
and Tpj correspond to geometric nonlinearity. 
 



 
 

Figure 2.4. Moment and shear diagrams for different loading cases 
 
Once the diagrams are formed, the moments and shears are vectored for each loading condition 
(j=0,1,2) at (m+1) nodes as given below: 
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The flexibility term fij consists of 2nd order flexural and shear responses, hence fij = fij_M + fij_T. Where, 
fij_M is the contribution of flexural responses, while fij_T corresponds to shear counterpart. The flexural 
flexibility terms are listed in Table 2.1. 
 
Table 2.1. Flexural flexibility terms 
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respectively. GA0 is initial shear stiffness, GA1 post cracking stiffness for un-degraded case.  This is 
the case when shear response dominates the behavior over flexure such as short beams, link beams, 
etc. For increasing curvature ductility demands ( shear strength reduces as shown in the figure 
on the right. The shear forces V=3, V=7 and V=15 corresponds to ductility demands =3, =7, =15; 
=3, =7 and =15 are related shear distortions, respectively. If ductility is between 3 and 7, the post-
cracking stiffness (GA1) reduces to GA2; and for 7<<15, GA1 reduces to GA3. For other cases post 
cracking stiffness is equal to GA1. 
 
The cracking strength is given by Sezen and Moehle (2004) as follows: 
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Where, fctm is the mean concrete tensile strength, N is compressive axial load, Ls/h is shear span ratio 
and Ag is gross sectional area. G is the elastic shear modulus. A0=0.8Ag is the effective area to take 
into account a parabolic shear stress distribution along the depth of the cross section. Then the 
cracking shear distortion is calculated by cr = Vcr / GA0. 
 

 
 

Figure 3.2. Shear distortion-shear force envelopes 
 
The ultimate shear strength is given by Priestley et al. (1994) with the following formula: 
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where, fc concrete compressive strength; Aw is transverse reinforcement area; fyw is transverse 
reinforcement yield strength;  is the angle defined by the column axis and the direction of the 
diagonal compression struts and regression analysis show that it can be taken to be equal to 35°; d - d' 
is the distance measured parallel to the applied shear between the centers of longitudinal 
reinforcement; s is spacing of transverse reinforcement; α is the angle between the column axis and the 
line joining the centers of the flexural compression zones at the top and bottom of the column. The 
factor k is a parameter depending on the curvature ductility demand as shown in Fig. 3.3. 
 
The ultimate shear distortion is estimated using the truss analogy approach proposed by Park and 
Paulay (1975) and Kowalsky et al. (1995) and calculated with following formula: 
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