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SUMMARY: 
Experimentally tested RC columns demonstrate that, for large inelastic demands under cyclic loading, damage 
concentrates within a finite member length around the section of maximum moment. This region length is shown 
to increase significantly with compressive axial load. The present work addresses the need to incorporate such 
finding in inelastic analyses of frame buildings and bridges, in order to reconcile the simulation of local 
(moment-curvature) and global (drift-lateral load) responses. The proposed model combines: (i) a recently 
developed adaptive force-based beam element, which ensures simultaneously a high degree of accuracy for 
hardening behaviour and an objective response during the post-peak phase(s); (ii) a new method to estimate the 
damaged region length, based on the distribution of the steel strains along the compressed longitudinal 
reinforcement. Numerical tests and comparison with experimental results under distinct values of axial load ratio 
show an overall satisfactory performance of the model. 
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1. INTRODUCTION 
 
The dynamic analysis of reinforced concrete (RC) buildings or bridges under earthquake loading is 
generally carried out with beam-column elements, which should thus be able to duly take into account 
the inelastic behaviour of the actual member. 
 
The evolution of inelasticity can be tackled in two ways: by assuming that it concentrates within a 
chosen length in a pre-defined location of the member, or alternatively by allowing it to spread 
throughout the element. In the former case – lumped plasticity models, a value for the plastic hinge 
length is directly or indirectly assumed. In the latter category – distributed plasticity models, the 
inelasticity can spread throughout the member and therefore a priori estimations of the plastic hinge 
length are not required. That only holds true before the occurrence of softening sectional response, or 
if such branch does not take place at all; during post-peak phases of behaviour, a damaged region 
length should be defined in order to obtain regularized responses, as discussed below. 
 
The present proposal advances the current knowledge by associating a recent adaptive force-based 
beam element, used to obtain regularized softening responses, with a new method to predict the 
damaged region length of RC members. The latter is not based on traditional closed-form expressions, 
but rather on the evaluation of the steel strain distribution along the compressed longitudinal 
reinforcement. Finally, the previous approach is tested and compared with experimental results. 
 
 
 
 
 
 



 
2. AXIAL LOAD AND DAMAGED REGIONS IN RC MEMBERS 
 
2.1. Plastic Hinge Length vs. Damaged Region Length 
 
The term ‘plastic hinge length’ is still widely used to interchangeably describe two distinct quantities: 
(i) a conventional and fictitious parameter that accounts indirectly for the effects of shear, bond-slip, 
etc, and from which the inelastic member displacement can be computed based on an assumed 
curvature distribution; (ii) an actual physical ‘damaged region length’, wherein major member damage 
concentrates, such as: cover spalling, yielding of longitudinal steel, crushing of concrete core, 
buckling of rebars, yielding of transversal reinforcement. The latter is also sometimes called ‘critical 
region length’ or ‘’ductile detailing length’ [Pam and Ho, 2009], since it indicates the member region 
that should be effectively confined by transverse reinforcement in order to achieve a desired 
performance level. A distinction between ‘length of plastification’ and ‘plastic hinge length’ is also 
explicitly addressed by Fardis [2009]. 
 
Besides being conceptually different, in general the two definitions above do not correspond to the 
same quantitative value: even subtle differences can have a significantly impact on the accuracy of the 
analyses. The misuse of terminology, which often occurs within the technical community itself, holds 
back the development of a more insightful understanding of RC frame modelling. The authors 
themselves often capitulate to the usage of ‘plastic hinge length’ as an ‘umbrella definition’, 
established in the early days of Earthquake Engineering; however, in the present work the 
aforementioned separation is respected. 
 
2.2. The Influence of Axial Load 
 
A number of factors affect the damaged region length: axial load ratio, moment gradient, mechanical 
properties of longitudinal and transversal steel, concrete strength, level of shear stress, level of 
confinement, etc. In particular, and up until recently, the influence of the axial load was not clearly 
understood, probably due to the fact that it is not so apparent in low axial load ranges. That was 
reflected in an overwhelming neglect of the axial load in the majority of available formulas for plastic 
hinge length. 
 
For instance, Park et al. [1982] suggested the use of 0.4h, where h is the overall depth of a column. 
Another widely used expression is the formula by Paulay and Priestley [1992], 0.08L + 0.022dbfy 
(yield strength fy in MPa), where L is the height of a cantilever column and db is the diameter of the 
longitudinal rebar. 
 
Nevertheless, recent research showed that the damaged region length increases with compressive axial 
load, and that such increase can be quite meaningful for moderate to high axial load ratios [Bae and 
Bayrak, 2008; Pam and Ho, 2009]. Hence, more recent formulas for the plastic hinge length (and for 
the damaged region length) incorporate such finding, which is also considered in the present work. 
 
As an alternative to the typical closed-form expressions used to compute the plastic hinge length, Bae 
and Bayrak [2008] proposed a method, called ‘Concrete Compression Strain Method’, which also 
accounts for the effect of the axial load. It is based on experimental observations showing that the 
damaged region starts to form after the maximum moment capacity is reached, concentrating within a 
finite member length around it. The crucial step in the method involves plotting the most compressed 
longitudinal bar strain profile along the column length (when the maximum moment occurs, as stated 
before), and subsequently identifying the length of the region in which such bar is yielding; such rebar 
yielding length is denoted as Ly. 
 
A similar rationale is used for the procedure developed herein, which the following section addresses 
in detail. 
 



3. NEW DAMAGE-FOLLOWING MODEL 
 
3.1. Proposed Method for Computation of Damaged Region Length 
 
Bae and Bayrak [2008] implemented their plastic hinge model in a computer program for the analysis 
of individual cantilevers. Distinctly, a new procedure is proposed for incorporation into a finite 
element computer code previously developed by the authors. It analyses frame structures under static 
or cyclic loading, making use of distributed plasticity elements. 
 
As discussed in section 2.1., the plastic hinge length and the damaged region length are distinct 
concepts. The latter should be used to regularize the response in the context of distributed plasticity 
elements – in particular when force-based elements, which strictly satisfy equilibrium, are employed. 
Consequently, the procedure by Bae and Bayrak [2008], which directs to plastic hinge analysis, 
requires adjustment. 
 
The criterion proposed herein is simply to add the rebar yielding length Ly to a value of 0.4h. The latter 
term thus stands as a ‘minimum’ value of the damaged region length, while Ly reflects the influence of 
a number of factors such as the axial load, the moment gradient, or the mechanical properties of the 
longitudinal reinforcement. 
 
The fact that the damaged region length can be estimated (at least approximately) when the maximum 
moment capacity is attained, aligns very conveniently with the need to regularize the post-peak 
softening response from that point on and to keep the physical meaningfulness of the results. The 
advantage of the current method is that it is not based on the use of a closed-form expression, but 
rather on the direct and continuous monitoring of a parameter that varies during the response and thus 
provides updated information on the condition of the member. 
 
3.2. Adaptive Force-based Element for Regularized Response 
 
The versatile ‘adaptive force-based formulation’ developed by Almeida et al. [2012], which is based 
on an automatic and computationally efficient commutation between integrations schemes, is used for 
the implementation of the current method. It ensures a high degree of accuracy for hardening behavior 
and, simultaneously, an objective regularized response during the post-peak phase(s). 
 
Additionally, it frees the analyst from the difficult task of deciding, a priori, whether to use a standard 
or a regularized integration approach: the element employs the standard Gauss-Lobatto integration 
scheme during the hardening phase and continuously checks for the occurrence of softening at the 
extreme integration points (IPs). In the latter case, i.e., when the maximum moment capacity is 
overcome, the integration weights commute to those provided by an interpolatory quadrature rule 
using an appropriate value of the damaged region length.  
 
The length of the region where the compressive longitudinal bars are yielding, Ly, is computed 
automatically from a piecewise cubic interpolation between the vector assembling the controlling 
rebar compression strains at every IP along the element, and the vector assembling the bending 
moments at every IP. Therefore, the accuracy of the above interpolation increases when the number of 
IPs per element also increases. 
 
 
4. APPLICATIONS 
 
4.1. Specimen Details and Modelling Approach 
 
In order to illustrate the aforementioned method, the experimental tests of two full-scale columns by 
Bae [2005] are modelled. The specimens – identified by the acronyms S24-2UT and S24-5UT – were 
tested under moderate and high axial load levels, and reversed lateral cyclic displacements. 



Table 4.1. Details of test specimens 

Concrete

f c ' [MPa] Diameter [mm] Number  yl  [%] f yl  [MPa] Diameter [mm] spacing s h  [mm]  s  [%] f yh  [MPa]

S24-2UT 43.4 22.2 12 1.25 503 12.7 95 2.03 427

S24-5UT 41.4 22.2 12 1.25 400 12.7 152 1.27 434

Specimen
Longitudinal steel Transversal steel

 
 
The columns’ height is 3.048 m and their square cross-sectional dimensions are 609.6  609.6 mm. 
The specimens were axially loaded with P = 0.5P0 and P = 0.2P0, respectively. P0 stands for the 
nominal axial load capacity as per ACI 318-05 [2005] and is given by P0 = 0.85fc’(Ag - As) + fyl As, 
where: fc’ is the compressive strength of concrete, Ag is the gross area of concrete section, As is the 
area of tension reinforcement, and fyl is the yield stress of longitudinal reinforcement. Further details 
on the test specimens can be found in Table 4.1, as well as in Bae [2005]. 
 
Shear deformation is not expected to play a relevant role since the shear span-to-depth ratio is 
relatively large (=5). On the other hand, the latter value – in association with the large axial load ratio, 
may indicate the importance of geometrical nonlinear effects. These were accounted for through a 
corotational formulation. 
 
One force-based element is used to model each specimen [Calabrese et al., 2010]. The element 
integration assembles the response of the member from several controlling sections and is performed 
with a Gauss-Lobatto scheme with five or seven IPs, or an adaptive scheme with 7 IPs [Almeida et al., 
2012], see discussion below. At the IP level, the corresponding sectional response is evaluated through 
a refined layer approach, wherein different uniaxial constitutive laws are assigned to each material. 
 
In general, concrete tested in large members depict a lower apparent unconfined compression strength 
fco’ than the control-cylinder strength fc’ (see Table 4.1). Consequently, an assumed fco’ = 0.9fc’ is 
assigned to the concrete cover layers. The unconfined concrete strain co is considered to be 0.002, as 
usual, and the concrete Young’s modulus is estimated as Ec = 5000(fco’)

1/2. The tensile strength is 
computed with the expression ft’ = 0.34(fco’)

1/2. 
 
The compressive concrete stress is given by the equation suggested by Popovics [1973], while a linear 
response is assumed for tensile behaviour up to tension resistance, followed by an exponential decay. 
 
Confinement effects on the concrete core due to the transverse reinforcement can be simulated by a 
confinement factor kc. Herein, the confined compression strength and corresponding strain are 
obtained through fcc’ = kc fco’ and cc = co [1 + 5(kc – 1)], respectively. The confinement factor kc is 
evaluated with the well-known model of Mander et al. [1988], resulting in kc = 1.479 for specimen 
S24-2UT and kc = 1.301 for specimen S24-5UT. The previous parameters define the model assigned to 
the concrete core layers. 
 
Finally, the longitudinal reinforcing steel is modelled with a bilinear stress–strain relationship with 
elastic modulus Es = 200 GPa, 1% strain-hardening ratio, and yield stress as depicted in Table 4.1. 
 
4.2. Simulation with Fibre Frame Models 
 
Figures 1 and 2 show the experimental and numerical moment-curvature curves, where the latter are 
obtained with the model described in the previous section. It should be noted that the experimental 
curvatures were calculated from the displacement readings measured by the upper and lower linear 
potentiometers located at the most damaged region [Bae, 2005]. This last author indicates that the 
procedure used to compute the backbones curves was adopted from FEMA 356 [2000]. 
 
The comparison indicates a satisfactory simulation. Furthermore, the effect of the axial load in 
increasing the flexural capacity and reducing the available sectional curvature ductility is apparent. 



 

 
 

Figure 1. Moment – Curvature response at most damaged region, at the base of specimen S24-2UT (P = 0.5P0). 
 

 
 

Figure 2. Moment – Curvature response at most damaged region, at the base of specimen S24-5UT (P = 0.2P0). 
 
At the member level, Figures 3 and 4 display the response of a force-based element with a Gauss-
Lobatto integration scheme. Such option represents the most commonly used approach for the 
simulation of inelastic behaviour with distributed plasticity models. The cases of five and seven IPs 
(controlling sections) are studied, which corresponds approximately to lower and upper bounds 
employed in practical structural analysis. 
 
It can be seen that the imposed maximum top lateral displacement depends on the specimen (S24-2UT 
or S24-5UT) and number of IPs (five or seven). There is also a circle identifying experimental drift-
load points, denoted as ‘Match point from test’. 



 

 
 

Figure 3. Drift - Load response of specimen S24-2UT (P = 0.5P0) using typical Gauss-Lobatto integration. 
 

 
 

Figure 4. Drift - Load response of specimen S24-5UT (P = 0.2P0) using typical Gauss-Lobatto integration. 
 
All the above-mentioned drift levels correspond to attaining the same base sectional curvature 
indicated in Figures 1 and 2. The fundamentally distinct values of the maximum top displacements 
with five and seven IPs, as well as the displacements corresponding to the ‘Match point from test’, are 
worrying. They serve as a clear evidence of the difficulty in establishing a connection between the 
simulated local and global levels of behaviour. 
 
The previous poor performances are due to localized responses along the post-peak branches, wherein 
the finite element problem becomes ill-posed, and indirectly defines a region wherein inelasticity 
concentrates. The length of that region is defined by the integration weight of the Gauss-Lobatto IP 
where the maximum moment capacity is surpassed; hence, it is an artificial and unintended 



consequence of the numerical integration scheme adopted, and does not necessarily reflect the 
damaged region length observed in actual tested specimens. In order to establish such link, an 
appropriately computed damaged region length must be imposed, as investigated in the next section. 
 
4.3. Response with Damage-following Model 
 
The adaptive force-based element developed by Almeida et al. [2012] is now employed, in association 
with distinct expressions for the damaged region length: (i) the expression by Park et al. [1982], 
indicated in section 2.2.; (ii) the expression by Paulay and Priestley [1992], also recalled in section 
2.2.; (iii) the suggested method to compute the damaged region length, proposed in section 3.1. 
 
Seven IPs are defined for the element integration, which represents a sufficiently large number for 
accurate interpolation of the longitudinal rebar compressive strain, as discussed in section 3.2. 
 
The values of the damaged region lengths obtained with the three alternative approaches are 
summarised in Table 4.2. It also includes, for comparative purposes, the equivalent regularization 
lengths implicitly assumed when five or seven Gauss-Lobatto IPs are used. 
 
Table 4.2. Damaged region lengths as predicted by different models, and implicit in Gauss-Lobatto quadrature 

Specimen Paulay & Priestley Park et al. Proposed Model 5 Gauss-Lobatto IPs 7 Gauss-Lobatto IPs

S24-2UT 0.804 h 0.4 h 0.978 h 0.25 h 0.119 h

S24-5UT 0.721 h 0.4 h 0.442 h 0.25 h 0.119 h
 

 
The drift-lateral load response curves are shown in Figures 5 and 6. Once again, the same principle 
was employed to define the distinct values of the final imposed drifts: they all correspond to attaining 
the same values of the curvatures at the base section, depicted in Figures 1 and 2. 
 
The main conclusions that can be drawn from Figures 5 and 6 are: (i) for specimen S24-2UT, tested 
under high axial load ratio, the use of the expression by Park et al. [1982] results in a very significant 
underestimation of the drift capacity. On the other hand, regularizing the response with the equation 
by Paulay and Priestley [1992] yields a more acceptable prediction; (ii) for specimen S24-5UT, tested 
under moderate axial load ratios, the expression by Park et al. [1982] yields a good agreement, whilst 
the proposal by Paulay and Priestley [1992] produces an unsafe overestimation of the drift capacity; 
(iii) the proposed model simulates very efficiently the drift capacity of both tested specimens. 
 
Furthermore, it is noted that the response is exactly identical up to the peak. In other words, the 
distinct concentrations of curvatures for the different cases take place exclusively along the softening 
branch. For damaged region lengths smaller than the length where damage actually concentrates (see 
Table 4.2), the localization is more intense and the drift capacity is underestimated. Similarly, an 
overestimation of the drift capacity can also occur when the actual damaged region length is 
overvalued. 
 
Although the results obtained with the proposed model are satisfactory, a more thorough validation 
should be carried out by comparison with other experimental tests. The ultimate goal should always be 
the development of more reliable methods to compute the damaged region lengths. 
 
Finally, it should be acknowledged that the drift-lateral load simulation is not overly satisfactory (in 
terms of prediction of the resisting force or the post-peak branch of the response). Using a totally 
different modelling approach (lumped plasticity), Bae and Bayrak [2008] obtained similar results, 
which proves that the discrepancy is not due to (or specific to) fibre modelling approaches. The causes 
of such partial mismatch should be further and deeply investigated, but they stand out as a warning to 
the existing numerical difficulties in accurately reproducing a simple monotonic inelastic member 
response.  



 

 
 

Figure 5. Drift - Load response of specimen S24-2UT (P = 0.5P0) with regularized schemes. 
 

 
 

Figure 6. Drift - Load response of specimen S24-5UT (P = 0.2P0) with regularized schemes. 
 
 
5. CONCLUSIONS 
 
The simulation of highly axially loaded RC members can pose complicated challenges to the engineer. 
On the one hand, recent research has shown that the region where damage concentrates can increase 
considerably under large axial load ratios. However, the majority of existing expressions for predicting 
the damaged region length (which are often, and incorrectly,  interchangeably used with expressions 
for the plastic hinge length), do not yet acceptably model this feature. On the other hand, high axial 
loads tend to induce a softening type of response, giving rise to non-objective concentration of 
curvatures in the most strained sections. 



 
The regularization of the previous behavior is herein achieved through the use of a recently developed 
adaptive force-based beam element that always ensures an objective response, as well as an 
optimization of the corresponding order of accuracy. Further, it is associated herein with a new 
method to estimate the damaged region length, based on the distribution of the steel strains along the 
compressed longitudinal reinforcement. The latter evolve during the inelastic response, and should 
thus prove more versatile than fixed closed-form expressions to represent it. 
 
Numerical simulations and comparison with experimental results of specimens tested under distinct 
values of axial load ratios show an overall satisfactory performance of the model. 
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