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SUMMARY:  
Spatial correlation models for ground motion intensity measures (IMs) are essential for seismic analysis of 
spatially distributed systems. In this paper, geostatistical analysis is conducted to calculate the spatial correlation 
for Cumulative Absolute Velocity (CAV) and Arias Intensity (Ia) using strong-motion data from nine recent 
earthquakes occurred in Taiwan, Japan and California. The results indicate that the spatial correlations for CAV 
and Ia are closely related to the regional site conditions, and they can be predicted based on the spatial 
correlations of Vs30. Due to their intrinsic similarity, CAV and Ia have similar spatial correlation coefficients. 
The results are also compared with spatial correlations of peak ground acceleration (PGA). It is also emphasized 
that correction methods are employed to eliminate artificial correlations due to biased distance scaling and Vs30 
estimation. Finally, an example is presented to demonstrate that the annual frequency of exceedance curves for 
spatially distributed IMs differ significantly if different ranges of spatial correlations are used .  
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1. INTRODUCTION 

Considering spatial distribution of ground motion intensity measures (IM) is critical for seismic hazard 
analysis of spatially distributed infrastructure systems such as long-span bridges, lifelines, railways or 
geohazards. Traditional ground motion prediction equations (GMPEs) usually provide the statistical 
characteristics of IMs at a particular location for a casual earthquake event. However, the statistical 
characteristics of IMs at spatially separated locations are often overlooked. In recent years, spatial 
correlations of some important IMs such as the peak ground acceleration (PGA) and spectral acceleration 
(Sa) have been developed by several researchers (e.g., Boore et al., 2003; Jayaram and Baker, 2009; 
Goda and Atkinson, 2010; Esposito and Iervolino, 2011). However, some other important IMs, like 
Cumulative Absolute Velocity (CAV) and Arias Intensity (Ia), have not yet been thoroughly studied.  

CAV has been found to be a good index related to structural damages (EPRI, 1988). CAV is defined as 
the time integration of absolute acceleration as follows:  

( )
0

tott
CAV a t dt= ∫                                                        (1.1) 

where ( )a t is the absolute value of the acceleration time history, and ttot is the total duration of the 

ground motion time history. Similar to CAV, Arias Intensity (Arias, 1970) is the integration of the 
square of ground motion acceleration history over the total duration, given by the following equation: 
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where g is the acceleration of gravity. By definition, CAV and Ia share intrinsic similarity in that they 
both incorporate the cumulative effect of an acceleration time history. Hence they can capture multiple 
characteristics of ground motion, including the amplitude, the frequency content and duration of the 
ground motion time histories in an implicit way.   

Despite the fact that CAV and Ia have been regarded as promising IMs for seismic hazard evaluation, 
there are few spatial correlation models available. Most recently, Piggott and Stafford (2011) provided 
spatial correlation models of Ia based on ground motion data from the Northridge and Chi-Chi 
earthquakes. They found that it is not executable to provide a generic spatial correlation model since the 
spatial correlations differ significantly for these two events. To the best of the authors’ knowledge, no 
spatial correlation model for CAV is available in literature.  

In this study, recorded strong-motion data from nine recent earthquakes occurred in Taiwan, Japan and 
California are systematically compiled to evaluate the spatial correlation of CAV and Ia. The abundance 
of data enables development of an empirical model for estimating the spatial correlations based on 
regional site conditions. In order to calculate the intra-event residuals, the ground motion prediction 
equation for CAV proposed by Campbell and Bozorgnia (2010) (termed as CB10) and prediction 
equation for Ia by Campbell and Bozorgnia (2012) (termed as CB12) are chosen.  

2. SPATIAL CORRELATION MODEL  

Ground motion prediction equations (GMPEs) typically assume that IMs follow lognormal 
distribution. The observed logarithmic IM, denoted as ln ijY , of a ground motion record can be written 
as follows:  

( )ln ln , ,ij ij i ijY Y M R θ η ε= + +                                               (2.1) 

where ijY is the ground motion IM of the thj record of the thi  earthquake event, and   

( )ln , ,ijY M R θ is the predicted median value of for ln ijY  based on the magnitude (M), rupture 

distance (R) and other parameters (θ ) of the event. The random variable iη and ijε represent the 
inter-event and intra-event residuals, which are both assumed to be independent normally distributed 
with zero means and standard deviations of τ  and σ , respectively. The standard deviation of the 

total residual term can be calculated by 2 2
Tσ σ τ= + , and then ( )ln ln ;ij ij TY N Y σ= . 

For a given earthquake event, the inter-event residual iη is identical for all sites while the value of ijε  
varies with different sites (Abrahamson and Youngs, 1992). So, the total spatial correlation can be 
expressed as: 
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where ( ) ( );i, j1 i, j2
h hε ε ερ ρ=  represents the empirical spatial correlation obtained from intra-event 

residuals ijε , which is a function of the separation distance h between different sites. Given that the 

values of τ and σ are provided by GMPEs, estimation of ( )hερ  is much more important. So in 

this paper we just focus on the study of ( )hερ . 

 



 

 

2.1. Estimation of empirical semivariogram 

Semivariogram is a useful tool widely used to estimate the empirical spatial correlation of IMs. In 
general, the semivariogram ( )γ h  measures the average dissimilarity between data separated by a 
vector h. Under the assumptions that the spatial correlation is isotropic and second-order stationary, a 
scalar variable h = h  can be used in the empirical semivariogram formulation: 

 
( ) ( ) ( )1 1

2 i iu h uh Var z z Var z hεγ ρ+⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦⎣ ⎦                             
 (2.3)

 

where 
iuz is a random distributed variable (in this paper, 

iuz refers to the intra-event residual ijε in 

Equation (2.1)) at position iu and h again is the site-to-site separation distance (Cressie, 1993). 

As an estimate of the theoretical semivariogram, the empirical semivariogram can be calculated from a 
sample dataset using estimators. A robust estimator is less sensitive to outliers, and it is defined as 
(Cressie, 1980): 
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whereγ represents empirical data, ( )N h  is the number of pairs of sites separated by distance h. 
There are also some rules to properly define the size of the distance bins. It has been proposed that size 
of the bin should be no larger than a half of the maximum distance, and each bin contains at least 30 
pairs of data. 

2.2. Parametric fitting function 

A parametric fitting function is useful to represent the empirical semivariogram. Exponential model 
has distinct advantage of simplicity, therefore, it is adopted in this study. The exponential model 
approximates the empirical semivariogram using the following functional form: 

( ) [ ]1 exp( 3 / )h a h bγ = − −                                                 (2.5) 

where a is the sill of the semivariogram and also the population variance of random variables, b is the 
range of the semivariogram defined as the separation distance h at which ( )hγ  equals 95% of the 
sill. In other words, the range b is the distance where 95% of correlation is missing. For illustration, an 
example based on the residuals of CAV from the Chi-Chi earthquake is shown in Fig. 2.1, and the sill 
and range are marked. If the normalized intra-event residuals are used, they can be computed as: 

( )ln ln , ,ij ij ij
ij

j j

Y Y M Rε θ
ε

σ σ
−

= ≈                                            (2.6) 

where ijε means the normalized residuals, and jσ is the intra-event standard deviation for site j 
(which can be chosen as either the sample variation from a specific earthquake or the intra-event 
standard deviation provided by GMPEs). It should be emphasized that Eqn. (2.6) approximates the 
intra-event residuals using total residuals because the inter-event residual is constant for each site 



 

 

during one earthquake. Hence, the relationship between the spatial correlation and semivariogram can 
be simplified as: 

( ) exp( 3 / )h h bερ = −                                         (2.7) 

Therefore, the range b is the only unknown parameter to quantify the spatial correlation. Several 
approaches have been proposed in previous studies to fit the empirical data using the exponential 
model, such as the weighted-least-square method and the manual fitting method. Since it is more 
important to fit the data at the short distance range, the manual fitting method proposed by Jayaram 
and Baker (2009) is employed in this study although this approach is relatively subjective.  
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Figure 2.1 An example of empirical semivariograms using robust estimator based on the normalized intra-event 

residuals of CAV. 

2.3. Strong motion database 

A total of 1588 ground motion recordings from nine earthquakes are compiled and used to calculate 
the spatial correlations. These earthquakes occurred in California (1994 Northridge earthquake, 2004 
Parkfield earthquake, 2005 Anza earthquake, 2007 Alum Rock earthquake and 2008 Chino Hills 
earthquake), in Japan (2000 Tottori earthquake, 2004 Niigata earthquake and 2007 Chuetsu 
earthquake) and in Taiwan region (1999 Chichi earthquake). The time histories for these events are 
obtained from CESMD (http://strongmotioncenter.org/), CESMOS (http://www.cosmos-eq.org/) for US 
earthquakes and K-NET (http://www.k-net.bosai.go.jp/) for Japan earthquakes. The seismic 
information and station conditions are obtained from the Pacific Earthquake Engineering Research 
(PEER) Center’s NGA database (http:peer.berkeley.edu/products/strong_ground_motion_db.html) and 
the Table S1 database provided by Kaklamanos and Baise (2011).  

3. CORRELATION RESULTS 

Following the procedures illustrated in the previous section, the normalized intra-event residuals from 
each earthquake are used to compute the range b of its semivariogram. The shear wave velocity in the top 
30 m, Vs30, is chosen as an index of the local site condition. The spatial correlation of Vs30 is quantified 
using the corresponding semivariograms of the normalized Vs30 values.  

3.1. Spatial correlations of CAV and Ia  

Before proceeding, the distribution of the intra-event residuals is examined against the rupture distance to 
see whether the data exhibit significant bias in distance scaling. The step is essential because it is 



 

 

possible that the residuals from some events might exhibit systematical bias against the distance, 
especially for these events that are not used to develop the GMPEs.  

Fig. 3.1 plots the distribution of the intra-event residuals against the rupture distance for different 
earthquakes. These plots clearly show that the biased trends are significant for events out of the NGA 
database (e.g., all events except for the Chi-Chi and Northridge earthquake), which will result in artificial 
correlation due to systematical predictive biases in the distance scaling. A simple linear regressed line is 
also plotted on each subplot. 

Rupture distance (km)

R
es

id
ua

ls
 fo

r 
C

A
V

 (
ln

 u
ni

t)

Chi−Chi

10
0

10
2

−1.5

−1

−0.5

0

0.5

1

1.5

Rupture distance (km)

R
es

id
ua

ls
 fo

r 
C

A
V

 (
ln

 u
ni

t)

Northridge

10
0

10
1

10
2

−1.5

−1

−0.5

0

0.5

1

1.5

Rupture distance (km)

R
es

id
ua

ls
 fo

r 
C

A
V

 (
ln

 u
ni

t)

Parkfield

10
0

10
1

10
2

−1.5

−1

−0.5

0

0.5

1

1.5

 
 

Rupture distance (km)

R
es

id
ua

ls
 fo

r 
C

A
V

 (
ln

 u
ni

t)

Chino Hills

10
1

10
2

−1.5

−1

−0.5

0

0.5

1

1.5

Rupture distance (km)

R
es

id
ua

ls
 fo

r 
C

A
V

 (
ln

 u
ni

t)

Niigata

10
0

10
1

10
2

−1.5

−1

−0.5

0

0.5

1

1.5

Rupture distance (km)

R
es

id
ua

ls
 fo

r 
C

A
V

 (
ln

 u
ni

t)

Alum Rocks

10
1

10
2

−1.5

−1

−0.5

0

0.5

1

1.5

 
 

Rupture distance (km)

R
es

id
ua

ls
 fo

r 
C

A
V

 (
ln

 u
ni

t)

Anza

10
1

10
2

−1.5

−1

−0.5

0

0.5

1

1.5

Rupture distance (km)

R
es

id
ua

ls
 fo

r 
C

A
V

 (
ln

 u
ni

t)

Chuetsu

10
0

10
1

10
2

−1.5

−1

−0.5

0

0.5

1

1.5

Rupture distance (km)

R
es

id
ua

ls
 fo

r 
C

A
V

 (
ln

 u
ni

t)

Tottori

10
0

10
1

10
2

−1.5

−1

−0.5

0

0.5

1

1.5

 
 

Figure 3.1. Distributions for residuals with respect to rupture distance (km) for nine earthquakes.  
 
It is to be noted that presently no predictive equation for CAV and Ia is available to incorporate these 
events that are out of the NGA database. Therefore, in order to reduce artificial correlations, an 
additional distance term is added for each event to correct the intra-event residuals as follows:       

( ) ( )1 2ln ln , , ln( )corr ij ij ijY Y M R Rε θ ϕ ϕ= − − +                               (3.1) 

 
where ijR  is the rupture distance of the thj recording and thi event, and 1ϕ , 2ϕ  are the coefficients 
obtained by simple linear regression. After this correction to the distance scaling, the residuals show 
no significant bias against rupture distance for events. For event within the NGA database, such as the 
Northridge earthquake, the biased trend is not obvious, which implies that residuals for these events 
can be used directly to compute semivariograms.  
 



 

 

After checking the distribution of the residuals, as we mentioned before, the second step is to 
normalize the intra-event residuals (obtained by logarithm IMs minus logarithm predicted median 
values). Because only two earthquakes (Northridge and Chi-Chi earthquake) are selected as part of the 
NGA database to develop GMPEs, it is not surprising that other earthquakes’ sample variations are 
somewhat different from these provided by GMPEs. In view of this, we use the event-specific sample 
variance rather than these provided by GMPEs. Based on the total number of sites and separation 
distance of all sites for each earthquake, the width of distance bins varies from 2 km to 6 km for 
different events to ensure at least 30 pairs of data in each bin.   
 
The empirical semivariograms and the fitted curves for CAV and Ia are shown in Fig. 3.2. All manual 
fitted curves perform reasonably well at the short distance range, which is the most concerned and 
important region as was discussed before. For different events, the shape of empirical semivariogram 
and fitted curves differs significantly. The computed values of range b are compiled in Table 3.1. The 
considerable difference in range b implies that the spatial effects of IMs may be influenced by 
characteristics of different regions, such as the regional geological conditions.   
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Figure 3.2. Experimental semivariogram obtained by CAV and Ia residuals for nine earthquakes. 

3.2. Spatial Correlations of Vs30 

Due to the fact that the travel path and frequency contents of earthquake waves are strongly dependent on 
the local geology condition, the effects of local geological conditions on the spatial IM correlation have 
been investigated (e.g. Jayaram and Baker, 2009). For this purpose, the correlation range of the 
normalized Vs30 values (normalized by the averaged Vs30) can be used to represent the homogeneity of 



 

 

the regional geological conditions, as a larger correlation range of the Vs30 simply implies a more 
uniform geological condition. One can refer to Jayaram and Baker (2009) for more details.  

However, most Vs30 values in the strong motion database are not directly measured but inferred from 
other geological information. In this regards, a constant Vs30 value is often assigned to sites that are 
identified as being in the same site category. The inference results in reduced variability of the Vs30 
distribution compared with the variability of measured data for some regions. These inferred Vs30 
values tend to imply a more uniform geological condition than the actual case, and consequently, an 
artificially increased spatial correlation range of Vs30. Even for well-recorded events such as the 
Chi-Chi or Northridge earthquake, the number of measured Vs30 values is less than 40% of the total 
data. In addition, only approximately 5% of measured Vs30 values are available for the Anza and Chino 
Hills earthquakes. Figure 3.3(a) displays the distribution of Vs30 values against the rupture distance for 
Chino Hills event, where a large number of identical Vs30 values are inferred. As is explained 
previously, the situation could greatly increase the range of spatial correlation for Vs30.  
 
A simple correction method is implemented to reduce the fake spatial correlations of Vs30. Firstly, all 
Vs30 data are randomly re-distributed around that value using Monte-Carlo method by assuming Vs30 
follows a lognormal distribution with a specific standard deviation. The standard deviation of lnVs30 is 
assumed to be 0.2 for measured data 0.3 for inferred data, as was provided by Chiou et al. (2008). 
Figure 3.3(b) displays one realization of the randomly redistributed Vs30 values. Secondly, the 
Monte-Carlo simulations are repeated for two thousand times and the value of range b is obtained for 
each realization. Finally, we choose the mean value of the computed b as the corrected range of 
(normalized) Vs30. After this correction, the correlation ranges of Vs30 for some events are greatly 
reduced as expected. For instance, the Vs30 range for the Chino Hills event is reduced from 35 km to 
14.7 km after correction. The corrected Vs30 ranges for nine aforementioned earthquakes are also listed 
in Table 3.1.    
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Figure 3.3. (a) Distribution of Vs30 values and (b) redistributed Vs30 values with respect  
to rupture distance (km) for Chino hills earthquake.  

 

Table 3.1. Values of range b (in km) for CAV, Ia, PGA and Vs30 

 
Events CAV  Ia PGA Vs30 Events CAV  Ia PGA Vs30 

Northridge 11 7.4 10.8 0 Chi-Chi 24 38 48 27.7 

Parkfield 10 9.2 7.6 2.9 Tottori 19.3 16.7 20.6 18.7 

Anza 42 35.6 54 20.3 Niigata 29.7 32 54 22.3 

Alum Rock 27.4 34 21.5 13.7 Chuetsu 18 19 22 21.2 

Chino Hills 20.3 19.8 16 14.7  

(a) (b) 



 

 

3.3. Predictive models based on site conditions 

In this subsection, relationships between the ranges of IMs (CAV, Ia and PGA) with that of Vs30 values 
are examined. As is shown in Figure 3.4, the ranges of IMs are in general positively correlated with the 
range of Vs30. i.e., the correlation range of an IM increases if the range of Vs30 values increases (more 
homogeneous). For practical purpose, three simple fitting functions are provided as follows: 

CAV: 11.65 0.68CAV vsb b= +     (σ=8.2)                                       (3.2) 
Ia:    7.92Ia vsb b= +          (σ=7.8)                                    (3.3) 
PGA: 8.92exp(0.065 )PGA vsb b=  (σ=12.2)                                   (3.4) 

 
where vsb , CAVb , Iab , PGAb  represent the correlation range related to the normalized Vs30 and the 
normalized IM (CAV, Ia, PGA) residuals, respectively. As is shown in Fig. 3.4, the predictive model 
shows reasonably good agreement with the emprical data. The standard deviations σ of the predicted b 
values are also provided in Eqs. (3.2)-(3.4) to quantify the uncertainty associated with the estimation. It is 
observed that the ranges of spatial correlations for CAV, Ia and PGA are similar if the range of Vs30 is 
small (the site condition is more heterogeneous), while the difference becomes more pronounced when 
the range of Vs30 increases (the site condition is more homogeneous). In general, Ia have slightly larger 
correlation range than that of CAV. For a relatively homogeneous geological condition, PGA appears to 
have a stronger spatial correlation (i.e., a larger correlation range) than CAV and Ia. For example, if the 
range of the normalized Vs30 is 20 km, the predicted range for CAV, Ia and PGA are 25 km, 27.9 km and 
32.7 km, respectively.  
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Figure 3.4. Ranges of residuals calculated by IMs (CAV, Ia and PGA) with respect to normalized Vs30 values. 

4. CONCLUSIONS AND DISCUSSIONS 

In this paper, the spatial correlations of Ia and CAV are obtained by semi-empirical estimation using nine 
recent earthquakes. An exponential model is used to represent the spatial correlation as a function of the 
separation distance. The ranges of normalized Vs30 values are computed as an index to represent the 
homogeneity of the local site condition. Correction methods are applied to reduce artificial correlation 
arising from biased predictive models or inferred Vs30 values. The results indicate that, the spatial 
correlations for IMs (CAV, Ia and PGA) are strongly dependent on the local site conditions. Hence, 
some simple equations are proposed to quantify the spatial correlations of IMs with respect to the range 
of Vs30 values. For a specific region, firstly we estimate the range of Vs30 values based on geological 
information of neighboring sites. Then, the correlation range of IMs can be easily evaluated for further 
risk assessment and loss estimation. 

In previous sections, particular GMPEs are chosen to predict the intensity measures, so the results 
might be influenced by the choice of GMPEs. We also used other GMPEs for CAV and Ia available in 
literature to obtain the empirical semivariograms. Very similar results can be derived by using 
different GMPEs, indicating that obtained spatial correlation is model independent. A previous study 
(Piggott and Stafford, 2011) on the correlation model for Ia (using the Chi-Chi and Northridge 



 

 

earthquake) shows a slightly smaller correlation range than that in the present study. For instance, the 
reported correlation range for the Chi-Chi earthquake is 31 km in Piggott and Stafford (2011) 
compared with 38 km in this study. The difference can be attributed to epistemic uncertainty using 
different GMPEs and fitting technique. There is no comparable result related to the spatial correlation 
of CAV in literature.   

Finally, an illustrative example is provided to highlight the importance of the spatial correlation of IMs 
in seismic hazard analysis. Considering a hypothetical region 40 km × 40 km in size located near a 
point source at the origin, the area is divided into cells of 1km × 1 km in size. Assuming that the style 
of faulting is a reverse fault, the average site conditions of the region is deep soils (the averaged 
Vs30=240 m/s). For illustration purposes, a scenario earthquake with moment magnitude of 7 and 
corresponding annual exceedance rate of 1/ 500Mλ =  is considered. GMPE (i.e., Campbell and 
Bozorgnia, 2012) provides the predicted median and the standard deviation of Ia values at each site 
location. Copula functions (Nelson, 2006) can be used to generate the intra-event residuals, which are 
normally distributed with a zero mean and a standard deviation specified by GMPEs at each site, while at 
the same time, they are spatially correlated according to the given spatial correlation coefficients. 
Detailed procedures can be found in the references (e.g. Sokolov and Wenzel, 2011). Two Monte Carlo 
realizations of Ia values (in natural log scale) are shown in Figure 4.1 by assuming the correlation ranges 
of 10 km and 40 km, respectively. As is expected, a large correlation range corresponds to a more 
uniform spatial distribution of Ia’s, as shown in Fig. 4.1(b). 

Monte Carlo method is applied to generate 10000 realizations of spatially-correlated Ia values over the 
region. Given a specified value of Ia (denoted as *Ia ) and its exceedance area ratio *AR (defined as ratio 
of the areas whose Ia values exceed the specified *Ia value against the total area of the region), the annual 
rate of exceedance can be computed from the Monte Carlo realizations as: 

* *( & )M P Ia Ia AR ARλ λ= ⋅ > >                                          (4.1) 

Several special cases are considered for comparison by assuming that the intra-event residuals of Ia are 
independently distributed without spatial correlation (correlation range is zero), or spatially correlated 
with the correlation range of 10 km and 40 km, respectively; or perfectly correlated (correlation range is 
infinite such that the residuals are identical over the region). Figure 4.2 shows the annual exceedance 
curve for Ia with the exceedance area *AR  of 5% and 25%, respectively. The results imply that, the 
spatial correlation does increase the probability of rare occurrence of the IM, especially when the mean 
annual rate of exceedance is smaller than 410− in our case. For example, given an annual rate value 410− , 
the predicted Ia values for 25% area of exceedance for uncorrelated case and correlated case (range of 40 
km) is 1.06 m/s and 1.45 m/s, respectively. So the hazard is underestimated if no correlation is assumed. 
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Figure 4.1. Examples of realized spatially-correlated field of Ia (in natural log scale, unit of m/s) (a) correlation 
range as 10 km and (b) correlation range as 40 km.      
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Figure 4.2. Annual exceedance hazard curves for Ia considering different spatial correlations for  

(a) exceedance area ratio *AR as 5% (b) as 25% 
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