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SUMMARY: 
The longitudinal reinforcement within reinforced concrete elements could be subjected to large compressive 
strains under severe earthquakes, resulting in buckling. Observations have shown that this phenomenon may 
result in a buckling length larger than the spacing between transverse reinforcement, deforming the stirrups 
(global buckling of reinforcement). The behavior of the longitudinal reinforcement in monotonic compression 
considering the case of global buckling is studied in this work, based on a fiber concentrated plasticity model 
that considers four (4) plastic hinges, introducing the effect of transverse reinforcing and expansion of the core 
concrete in the analysis. The proposed model is validated by comparison of the model buckling mode with 
experimental results in the literature. The average error in the prediction of buckling mode is -0.59 (about half 
the space between stirrups), which is a reasonably good value considering that the database of tests used covers 
failure modes from 1 to 7 (stirrup spacing). 
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1. INTRODUCTION 
 

In a seismic context, the actions imposed by a major event can bring an element to its limit 
strength and deformation, yielding different types of failure. Elements designed to withstand 
significant forces and deformations in compression, such as columns or walls, need to be study 
accounting for potential loss of resistance generated by the buckling of longitudinal reinforcement. It 
has been observed that the concrete cover, since it is not confined, spalls at longitudinal strains 
between 0003 and 0004 (Papia et al., 1988), therefore, the effective lateral restraint and restriction to 
buckling of longitudinal reinforcement is given by the stirrups. 

 

 Figure1. (a) Local bar buckling, (b) Global bar buckling 
 
Usually, buckling of longitudinal reinforcement is considered located in a length determined by 

the distance between stirrups, which is called local buckling of the reinforcement (Fig. 1a). However, 
experimental observations have shown that in elements with a good distribution of stirrups, the 
buckling length may be longer, stretching those stirrups that are within the buckling length and 
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prevailing over the local buckling. This is called global buckling of the reinforcement (Fig. 1b). Thus, 
the buckling length is not completely determined by the spacing of stirrups, but also by the flexibility 
of the reinforcement (longitudinal and transversal). In order to study this phenomenon it is necessary 
to appropriately reproduce the behavior of the elements involved in rebar buckling. 

 
The objective of this work is to use an existing model, Massone & Moroder (2009), which has 

shown good performance in representing the local buckling of reinforcing and extending their 
application to global buckling in monotonic analysis. 

 
 

2. CONCENTRATED PLASTICITY MODEL – LOCAL BUCKLING 
 

The model described by Massone and Moroder (2009) is used to study the buckling response of 
bare longitudinal reinforcement, which captures the behavior of reinforcement in monotonic 
compression without constrains in its length, and has been slightly modified by Lacaze (2009). The 
original model considers a bar with fixed ends free to move vertically in its upper end, with an initial 
imperfection given by a lateral displacement in the middle of its length. The deformations are 
concentrated in four plastic hinges located symmetrically at positions of maximum moment for a point 
load or imperfection � applied at the bar mid-length. Additional lateral deformation � is associated to 
a vertical displacement � of the free end due to an applied load �. The plastic hinge length is set as the 
bar diameter, �� � �, with a constant curvature distribution along it, such that the hinge rotation, �, is 
related to the curvature 	 as � � 	 
 ��. The imperfection � can be introduced as an initial rotation. 

 
At the beginning of the axial loading, the load � and the moment � at the hinge are zero. A 

vertical displacement � of the upper end has an associated additional rotation of the hinge �� and a 
lateral displacement of the central zone of the bar �. Lacaze (2009) introduces a change in the original 
model in order to represent cyclic behavior and properly represent the response in tension without 
hinge formation. For this purpose, rotations (curvatures) are concentrated at the plastic hinge, but axial 
deformations are distributed along the bar. 

 
The internal forces in the hinge are determined by the axial strain, �, and the curvature, 	. The 

cross-section is discretized into a finite number of axially deformable fibers (20), where each fiber has 
a strain i ixε ε φ= + , assuming the Bernoulli hypothesis, where ix  is the location of the fiber. By 
means of the constitutive material law, the steel stress is obtained for each fiber (
�), resulting, by 
equilibrium, in a resultant axial force and moment at the hinge. 

 
The numerical nonlinear problem is reduced to a 1 DOF, where given an axial deformation, ��, the 

formulation iterates over the value for the plastic curvature, 	�, until equilibrium ( ) 2m p e w= +  is 
achieved (within a tolerance). The currently implemented model considers that the initial imperfection 
is present in the bar without residual stresses, i.e., the bar was not deformed but naturally has an 
imperfection. For straight bars, to avoid obtaining the solution without buckling effect (trivial 
solution), the model assumes an imperfection � � 0.01�, where � is the diameter of the longitudinal 
reinforcement. 

 
Reinforcing steel in tension is modeled as suggested by Mander et al. (1984). The model 

considers an elasto-plastic behavior with initial stiffness ��, and a yield stress and strain point given by 
(
�, ��). Strain hardening starts from an strain value of ���  governed by the relationship σ� � σ� ��σ� � σ�� � 	�
	�

	��
	���, where p � E�� �	�
	��

�

�

� and ends at the point (��,
�) where the peak stress is 
reached. A linear degradation is defined from the peak stress point to the fracture point (��, 
�).  

Commonly, steel compression behavior is represented by the same curve as for the steel in 
tension. However, the use of engineering coordinates (referred to initial length and cross-section) 



gives no reliable values given the reinforcement cross-section and length variation. The use of true 
coordinates allows considering the fact that the area changes as the load is applied. The response in 
compression taken as identical to tension in true coordinates provides a good correlation until reaching 
the buckling load. Thus, deformations in tension and compression may be written with respect to the 
values in tension, such that 2
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values of compression stress and strain in engineering coordinates (negative) and 
�,� and ��,� are those 
corresponding to tensile stress and strain (positive), as indicated by Dodd and Restrepo-Posada (1995). 

 
The steel cyclic model is based on a simple phenomenological formulation that requires 

unloading and reloading rules. In principle, the curves for the tensile and compressive monotonic steel 
are maintained, but outside the linear range the unloading point continues towards a point (end) with 
the same strain as in the previous reloading point, according to curve A (Fig. 2), which represents the 
Bauschinger effect. Curve A can be used as a transition point between unloading/reloading points, 

which has the form
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, where � is the 
parameter representing the Bauschinger effect (the smaller the value of �, the smoother the transition), �� is the initial elastic reloading/unloading module, �� and 
� are strain and stress at the beginning of 
curve A, and �� and 
� are the strain and stress at the end of curve A. The parameter � is defined as 

0( / ) /(1 )secQ E E a a= − − , with 0 0) ( )( /sec f fE σ σ ε ε= − −  and ( ) 1/
01 ( )/ RR

seca E E
−

= + . The 
values of �� and � used by Massone and Moroder (2009), originally obtained by Mander et al. (1984), 
were modified by Lacaze (2009) to improve cyclic response of the reinforcement. Thus, 
0 (1 )sE E ε= − ∆  and for the unloading stage ( )1/ 314 (1 14 )yR ε ε= − ∆  is used, whereas for the 

reloading stage ( )1/ 320 (1 18 )yR ε ε= − ∆  is considered, where Δε � |ε� � ε�|/2. 
 

 Figure 2. Cyclic steel model (Massone and Moroder, 2009 modified by Lacaze, 2009) 
 
The implementation for the first cycle involves knowing the end point of curve A, which is 

obtained originally by first shifting the steel envelope stress-strain curve to a point where elastic 
unloading results in zero stress, and then estimating the stress in the shifted curve at zero strain. 
However, Lacaze (2009) compared results obtained with this modeling approach and test results for 
the first cycle, and improved it by taking the final point as the yield strain point. For subsequent cycles 
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the start and end points correspond to points (strains) at the previous unloading and reloading points. 
After reaching the end of curve A, it returns to the shifted monotonic envelope. For internal cycles the 
end point corresponds to the start of the outer loop, rather than the inside loop (Fig. 2). 

 
 

3. CONCENTRATED PLASTICITY MODEL – GLOBAL BUCKLING 
 

In order to introduce the global buckling, the main model attributes for the concentrated plasticity 
model by Massone and Moroder (2009), modified by Lacaze (2009) are considered. Global buckling 
incorporates the interaction with stirrups along the buckled shape of the longitudinal reinforcement, as 
well as the impact of concrete expansion. Thus, overall response of longitudinal reinforcement in 
columns or wall boundary elements can be studied with the formulation. 

 
The buckling length, &, is determined by the mode of buckling considered in the analysis, so that 

the mode has an associated �'�� ( along &���� � � ( 
 ), with ) the spacing between stirrups, so that 
local buckling of reinforcement is represented by �'�� 1, and, in general, the total number of stirrups 
considered for the analysis is given by * � ( � 1. For superior modes, the model requires that at early 
stages of compressive strains concrete cover spalls, so that the constraining effect from the stirrups 
prevent or delay buckling.  

 
Previous researches have considered (e.g. Papia et al., 1988; Pantazopoulou, 1998) that the lateral 

expansion of concrete is enough to cause the stirrups large strains such that they are in the hardening 
region of the steel stress-strain response once buckling of longitudinal reinforcement occurs. On the 
other hand, Dhakal and Maekawa (2002) indicated that the expansion by itself is not enough to take 
the stirrup beyond the elastic range; implementing a model approach that considers that the expansion 
of concrete consumes all the elastic deformation of the steel within the buckled zone, but remains in 
the elastic zone where the concrete expansion is more relevant than buckling. Thus, the concrete 
contribution should not be neglected. In fact, ignoring the concrete expansion effect practically leads 
to only local buckling, that is, between two consecutive stirrups, given their high stiffness and 
strength. Thus, for stirrups within the buckling length of the longitudinal reinforcement, two sources 
of deformation are considered: first, the lateral expansion undergone by the confined concrete and 
second, the additional tensile strain provided by lateral displacement of the longitudinal bar once 
buckling starts. 

 

 Figure 3. Global buckling model – (a) initial condition (imperfection), (b) concrete core expansion (no 
buckling), (c) concrete expansion and bar buckling 
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The bar that is susceptible of buckling is initially in contact with the concrete core, but once 
buckling starts lateral confinement is reduced facilitating the expansion of the concrete inside the 
buckled length of the bar, so that, no contact is lost between reinforcement and concrete. Thus, the 
forces are transmitted from the stirrups to the concrete core, as well as to internal stresses of the 
longitudinal bar. In order to introduce the force in the stirrups, initially, an intermediate stage 
(fictitious) would be considered, where for an axial imposed strain, ��, associated to a vertical 
displacement -, the bar does not buckle, Fig. 3(b), and strains in the stirrups are only due to the lateral 
expansion of the concrete core, ���, considered identical for all stirrups. Under these conditions, the 
stirrups forces only due to the concrete expansion, .��, are transmitted completely to the concrete core. 

 
When considering the longitudinal reinforcement buckling, an additional strain is introduced into 

each stirrup, ��� , which is associated to a force increment, Δ.� , as shown in Fig. 3(c). These additional 
forces are balanced by internal moments at the hinges, regardless of an increase in the concrete core 
within the buckled bar length (forces in concrete are only added at the ends of the buckled length). The 
internal moment of a hinge, /, is the same for all hinges because the rotation in them is equal, 
balancing the additional forces in the stirrups, Δ.�, and the moment generated by the eccentricity of 
the axial force, + 
 0� � �1. Then, the analysis is reduced to capture the effect of incremental forces on 
the bar, and given the symmetry only half of the total bar length is considered, as shown in Fig 4. 
Thus, the problem considers the stirrups 1 to * , where *  depends on whether * (number of stirrups 
within the buckled bar length) is even (N'=N/2) or odd (N'=(N+1)/2), where in the case of odd value of 
N, half of the force .!��  should be considered. It is considered that the forces Δ.�  act perpendicular to 
the main direction of reinforcement, i.e., the stirrups only work in tension, neglecting other actions. 
Then the equilibrium equation for the hinges in the middle of the bar is given by Equation (1), where 2� is the eccentricity of the external axial force +, determined by tx e w= +  and 2�  is the vertical 
distance of the force Δ.�  relative to the extreme hinge, which in the case of Fig. 4 corresponds to the 
upper hinge. 

 

 Figure 4. Equilibrium buckled bar (half length) – (a) N even, (b) N odd 
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Since when the upper end moves the longitudinal bar inclines, the distance 2�  varies as 

displacement of the upper end, �, increases. It is assumed that the stirrup does not slide with respect to 
the longitudinal bar and therefore the force exerted by each stirrup is firmly joined to a fixed point of 
the model. 
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3.1. Forces in stirrups 

 
As stated earlier, in order to correctly characterize the response of stirrups the concrete core 

expansion as well as the additional deformation that comes from the buckled bar should be considered. 
The total force action on each stirrup, .� , is determined by the total strain, which considers both the 
deformation due to the concrete lateral expansion ��� and the lateral deformation that imposes the 
buckled bar, ��� . Thus, the force is estimated as ( )j t st wj ctF A ε εσ ε= = + , where 3� is the cross 
sectional area of the stirrup, and 
��0�1 is the steel stress for a strain �. Two steel models are 
considered to characterize the steel response of stirrups to better capture the available experimental 
data (Menegotto and Pinto, 1973; Mander et al., 1984). In both cases, after reaching the maximum 
stress, the capacity remains constant. 

 
The force Δ.�  corresponds to the additional force above the one introduced by concrete 

expansion, .��, which is described as h
j j jF F F∆ = − , where ( )h

j t st ctF A f ε= . The strain ��� is 
dependent of the average axial strain �� within the buckling length. These assumptions are considered, 
given the little information available to determine Δ.� , that is, the additional forces in the stirrups 
caused by buckling of the longitudinal reinforcement.   

 
3.1.1. Stirrup strain due to longitudinal bar buckling, ���  

Strains or stresses in stirrups are considered, in part, as a resultant from the displacements induced 
by bar buckling, acting in each contact point in the opposite direction to buckling (inward), which as a 
simple formulation can represent common configurations of stirrups (mainly in rectangular columns) 
and one of the most probable cases of buckling due to its lower stiffness (Fig. 5a), as it is pointed out 
by Papia et al. (1988). Due to this, corner bars are considered to buckle in the main directions. Thus, 
the stirrup strain is given by /jw j ty lε ′= , where ��  is the effective length of the stirrup, which can be 
regarded as the total length (lt) or half the length (lt/2) depending if the column is in bending or 
concentric compression , respectively. In case of concentric compression (Fig. 5a), it is supposed that 
there is simultaneity and symmetry of buckling (two opposite sides of the column), such that each 
longitudinal reinforcement bar acts on a length equal to half the total length of the stirrup. In case of 
bending, the bars are prone to buck in the region of highest compression of the element section (one 
side only of the column), acting over the total length of the stirrup, as the bars of the other end is being 
loaded in tension or with a lower level of compression, indicating that it will not suffer buckling or 
will occur at a later stage. 

 

  Figure 5. (a) direction analysis for buckling, (b) group bar buckling 
 
3.1.2. Concrete core expansion, ��� 

Deformation due to lateral expansion of the concrete (���) is usually considered uniform along the 
height of the element, which applies that is equal in all stirrups. This strain can be determined with the 

expression 
2

2
0.00015 /(1 2 )(1 2 ) 2 0.00015 /

e s yt c
c cc

c cc

k f
E
ρ ε ννε νε ν ε

ε ν
−−= − + − −    −  by Pantapozoulou 

n� 

n� 

(a) (b) 
�� 
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 is the confined concrete compressive 

strain at the maximum stress, 4� is the amount of volumetric transverse reinforcement, 
�� is the yield 
stress, �� is the concrete elastic modulus, 56� is the unconfined compressive strength of concrete and �� the correspondent strain, 7 corresponds to the initial Poisson's ratio, which is taken as 0.2. The 
effectiveness factor of confinement 8� is determined as in Mander et al. (1988), as indicated by 
Pantazopoulou (1998). This equation is based on the behavior of concrete with a constant lateral 
pressure, yielding to uniform strain distribution without showing the reduction of strain expected at the 
stirrup location, since on these places there is a higher local confinement. Even this small shortcoming 
this expansion model is chosen, since it is one of the few reported in the literature and requires 
parameters that are normally determined in common tests. 

 
In order to represent the impact of stirrups in the local expansion at their location, a calibration 

factor 8" is introduced by weighting the volumetric expansion component of the original expression. 
Besides, for simplicity, the term associated directly to confinement is removed given that confinement 
is already taking into account. Thus, the expression reduces to, 
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Factor 8" that multiplies the volumetric expansion component of Equation (2) is calibrated 

according to experimental measurements to adjust the measured strains in the stirrups resulting from 
the expansion of the concrete. For this purpose, the tests carried out by Sheikh and Uzumeri (1980) are 
considered. Least squares method is used to calibrate 8" to the data obtained experimentally, yielding 
an average value of 8" � 0.33. 

 
3.2. Methodology – buckling of group bars 

 
The analysis of elements such as walls or columns with longitudinal reinforcement prone to 

buckle, requires defining the number bars that might buckle on one side of the section (:#), and the 
number of legs of stirrups providing support against buckling in that direction (:�), as shown in Fig. 5b. The original equilibrium equation (1) for bare bar under buckling is modified to account for all 
reinforcement involved in group bar global buckling (longitudinal bars and stirrups) by weighting the 
corresponding forces (or moment) by :# and :�, depending on whether they correspond to longitudinal or transverse reinforcement, respectively, similarly as used by Dhakal and Maekawa (2002), yielding: 
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This methodology attempts to capture an average behavior of all bars, rather than an individual 

behavior, so that it makes no distinction between bars directly constrained by a stirrup bar or an 
intermediate bar.  
 
3.2.1. Critical buckling length selection 

The analysis considers a known buckling length, &, however, in reality this length depends on the 
characteristics of the longitudinal reinforcement and the restriction presented by the stirrups to 
buckling. Thus, the buckling length can range from stirrups spacing, ) (local buckling) to a length of 
several spacings. Local buckling occurs when there is a very high axial stiffness of the stirrups 
compared with the flexural stiffness of the longitudinal reinforcement, as is the case of very thick 
stirrups or very slender longitudinal reinforcement because of a large separation of stirrups or a small 
longitudinal reinforcement diameter. 



 
As a selection criterion it is considered that the buckling mode that yields the lower peak capacity 

is the probably mode, which corresponds to a simple condition consistent with the criterion used by 
other researchers to estimate the critical buckling load (e.g., Papia et al., 1988, Pantazopoulou, 1998, 
and Dhakal and Maekawa, 2002). Due to the shape of the overall stress-strain curves there are two 
types of behavior: the most common is that the maximum is at a value higher than the yield stress 
(e.g., Fig. 6 – L/s= 3 selected) and another where the differentiation of the curves occurs soon after a 
drop past yielding, in which case the second peak is considered for the analysis. This is because the 
major transverse displacement caused by buckling occurs after exceeding the first maximum. 
Although, this methodology requires this additional effort, its rewards lies in the fact that the stress-
strain can also be obtained. 

 
As in this methodology it is required to analyze the behavior of the bar from the local buckling 

mode and so on, in some configurations, this involves analyzing the buckling of a bar with slenderness 
(L/d) less than 4 due to the relatively short distance between stirrups. The original model considers 
that the plastic hinge length is the diameter of the reinforcement (d). Thus, to avoid the overlap of the 
4 plastic hinges, their length is limited to L/4. 

 

 Figure 6. Stress vs. strain response for several buckling modes and criteria selection 
 
 

4. MODEL RESULTS FOR BUCKLING OF GROUP BARS 
 
Several tests have been carried out to evaluate global and local buckling for columns with 

concentric axial load (e.g., Kato et al., 1995, Ooya and Kato, 1994, Masamoto et al., 1993, and 
Kikukawa et al., 1994). The high steel reinforcement (D13H-1) was not considered in the analysis, 
given the large difference observed for both models (6 cases). The columns had an square section with 
a core confined dimension estimated as l = 130 mm and a total length of L = 530 mm. The spacing of 
the stirrups ranged from 1.5db to 11db, where db is the longitudinal rebar diameter, with most test in the 
range 4db to 6db. Some columns presented stirrup in intermediate longitudinal bars (for either 8 or 12 
total longitudinal reinforcing bars, 4 bar columns were also tested). The rebar yield stress for the 
specimens considered for comparison ranged from 336 to 761 MPa, whereas the concrete strength 
ranged from 22 to 70 MPa for a total of 68 tests. The material information is based on σy and σm, as 
well as the stress-strain response in tension for most cases, which are available in the literature.  

 
Experimental results are compared to the buckling mode obtained with the proposed model for 

global buckling (MPG) and the model by Dhakal and Maekawa (2002). The results obtained for the 



models are shown in Fig. 7b, and the error between the experimental observation and the buckling 
modes obtained with the models are shown in Fig. 7(a). The error, in this case, is calculated as 

Mode Model TestError Mode Mode= − . Fig. 7 shows that the model yields global buckling modes lower 
than those observed experimentally with slightly higher errors (avg = -0.59, std = 0.88) than those 
obtained by applying the methodology by Dhakal and Maekawa (2002), which gives an average error 
of -0.26 and standard deviation of 0.73. As it can be seen in Fig. 7a, most cases show an error of 0 or -
1, indicating that the model fails to predict the number of stirrups within the buckled shape commonly 
in 0 or 1 (less than observed) unit. Fig. 7b shows the correlation between the observed and predicted 
buckling mode for all cases. Perfect correlation would results in a diagonal representation. The 
numbers within the circles (and size – the bigger the size, the larger number of cases) correspond to 
the number of occurrence cases. Although the differences, the model described in this study also 
allows defining the overall stress vs. strain curve for the buckled bars which can be used in sectional 
or elements, such as columns or walls, nonlinear analysis.  

 

 Figure 7. Model results – (a) Error, (b) observed vs. model prediction bucking mode. 
 
 

5. SUMMARY AND CONCLUSIONS 
 
The objective of this study is to represent the behavior of the longitudinal reinforcement in 

monotonic compression buckling considering the instability of the bar at a length that exceeds the 
distance between the stirrups and introducing the effect of transverse reinforcement and concrete core 
expansion in the analysis. For these purposes the model by Massone and Moroder (2009) for local 
buckling of reinforcement, based on 4 plastic hinges, is adjusted to introduce the forces associated 
with transverse reinforcement within the buckling length and the effect of concrete expansion. Forces 
generated on stirrups beyond the action of the concrete expansion are balanced with the internal 
moment in the buckled bar. 

 
In terms of the buckling mode obtained with the model, expressing it as the amount of stirrup 

spacing & ); , the results are relatively good yielding an error comparable to the model by Dhakal and 
Maekawa (2002), with an average error of -0.59 (about half a stirrup spacing) which is a good value, 
considering that the used test database has buckling modes ranging from 1 to 7. The methodology used 
for determining the buckling mode involves generating curves for several possible cases, thus, 
alternatively, the formulation by Dhakal and Maekawa (2002) could be used to select the buckling 
mode. The model described in this study, differently than most previous works, besides of predicting 
the buckling mode, provides the stress-strain curve for the buckled bars (σ-ε) which can be used in 
sectional or element analysis.  
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