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SUMMARY:  

The equivalent force control method uses feedback control to replace a mathematical iteration required to solve 

the nonlinear equation of real-time hybrid test with an implicit integration method. The commonly used PID 

controller as a candidate of equivalent force control has only limited robustness for nonlinear systems. For the 

nonlinear specimen in a real-time hybrid test, the sliding mode control is proposed to be used as the outer-loop 

controller of the equivalent force control. The design method of sliding mode control for equivalent force control 

is presented. The effects of key parameters of sliding mode controller on the performance of equivalent force 

control with are discussed and demonstrated through numerical simulation.  
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1. INTRODUCTION 

 

The real-time substructure testing (RSTing) divides the structure into two parts: the critical element is 

taken as experimental substructure and the remainder of the structure is a numerical model in 

computer. It can be used to test with large-scale or even full-scale specimens the dynamic performance 

of a structure accurately [Williams et al. (2001)]. 

 

In real-time substructure test, the integration method is critical to the success of the test. The explicit 

integration method such as the central difference method (CDM)(Wu et al. 2005) is usually 

conditionally stable. Although unconditionally stable explicit methods[Chen and Ricles (2008) and 

Bursi et al. (2008)] are available, all these methods require the information of structures; the stability 

and accuracy may be worsened if the structure enters nonlinear range. In contrast, most implicit 

methods (Jung, 2007) possess unconditional stability and good accuracy for nonlinear systems, but 

they demand complicated iteration to solve the nonlinear difference equation. Wu et al. (2007) 

proposed the equivalent force control (EFCM) method in which the nonlinear equation of implicit 

integration is solved by a so-called equivalent force feedback control. The PID controller has been 

used for equivalent force control
 
(Wu, 2011). But, as the PID is a linear controller, it has only limited 

robustness for nonlinear systems. So the nonlinear control methods are preferred in tests with 

nonlinear specimens. 

 

The sliding mode control (SMC) also named variable structure control is a nonlinear control method. 

Recently, it has been applied in structural control and structural testing system control. Yang et al. 

(1995) firstly applied the sliding mode control in structural control. The numerical simulation results 

showed that it has good control effect for nonlinear and hysteretic structures. Wang et al. (2007) 

applied the sliding mode control method to control the actuator in real-time substructure test. The 

numerical simulations showed that sliding mode has better performance than PID control for nonlinear 

specimens.  

 

In this study, the sliding mode control is proposed as the equivalent force controller for real-time 

hybrid testing. We will discuss the controller design and chattering problem. Results of numerical 

simulation will be given to demonstrate the performance of the sliding mode control. 



 

 

 

2. OVERVIEW OF EFCM 

 

In order to study the EFC method with SMC, the formulation of EFC (Wu, 2011) is introduced first. 

The equation of the motion for a RST at step i+1 can be expressed in a time-discretized form as  
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in which, M and C are the mass and damping matrices; R is the restoring force vector; d, v 

and a are the displacement, velocity and acceleration vectors of the structure, respectively; F 

is the excitation force vector; the subscript N denotes variables associated with the 

numerical substructure, and the subscript E denotes variables associated with the 

experimental substructure. 

 

With the Newmark constant-average-acceleration method, the acceleration and velocity are expressed 

in terms of displacement at the (i +1) step as 
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in which Δt is the integration time interval. Substituting Eqns. 2.2. and 2.3. into Eqn. 2.1. 

gives 
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In the above equations, KPD is called pseudodynamic stiffness; FEQ,i+1 can be considered as 

an equivalent force command consisting of the external force as well as the pseudodynam ic 

effect that depends only on the previous step response. Eqn. 2.4. can be viewed as a hybrid 

dynamic equilibrium condition. 

 

An RST with the EFC method is illustrated by the block diagram in Fig. 2.1. In the Figure, 

two controllers are shown. The inner one is for traditional displacement control of 

actuator-specimen system. The outer one is for equivalent force control that is used to 

enforce the equilibrium condition presented in Equation. 2.4. In each time interval Δ t, the 

force error eEQ between the equivalent force command FEQ,i+1(t) and the response FEQ,i+1(t), 

is converted to a displacement command d
c

i+1(t) using a force controller and a conversion 

matrix CF. The terms RE[d i+1(t)] and di+1(t) are the restoring force and displacement 

response of the experimental substructure subjected to the command d
c
i+1(t), respectively. If 

the equivalent force response closely tracks the command by force controller, the 

displacement command d
c
i+1(t) should approach the actual displacement solution di+1. The 

matrix CF can be set to a constant value and be constructed with the partial derivatives of the 

left-hand side of Equation. 2.4. with respective to di+1 at the initial state of the test structure. 
  

 

 

 

 



 

 

 

3. DESIGN OF CONTROLLER 

 

For controller design, a numerical model of the plant, i.e., the actuator-specimen system, is needed. In 

general, an actuator attaching a nonlinear specimen is a nonlinear system, which includes 

nonlinearities both from the specimen and from the actuator such as square root relationship between  

 
 

Figure 2.1. Block diagram of EFC 

 

oil pressure and flow, and oil leakage effects [Williams et al.(2001)]. However, when the capacity of the 

actuator is much larger than the resistance force of the specimen, the actuator system may be simply 

approximated by a linear system. A Second-order linear actuator model considering the effect of the 

variable stiffness of the specimen is used here, which, for convenience of later analysis, is expressed in 

time domain as 
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 are displacement commands and responses;

 

KP 

and KI are the displacement controller parameters; rE is the resistance force of the specimen; ko is a 

gain factor that relates the rate of the total oil flow qt into and out of the actuator chambers and the 

spool displacement xs; V is the volume of chamber; βE is the effective bulk modulus of oil; AP is the 

piston area; P is the supply oil pressure; KΔP is a gain factor for delta pressure feedback.  

 

For convenience, we denote as the plant the assemblage of actuator, experimental and numerical 

substructures, pseudodynamic stiffness and force-displacement conversion factor. For a linear single 

degree of freedom (SDOF) structure, the plant is described by  
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The state-space model of the plant can be obtained as  
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nonlinear part f can be covered by the control effort ue, and hence f can be viewed as matched 

uncertainty. 

 

For a sliding mode controller, its design can be divided into two steps, i.e., design the sliding surface 

and determine the control law. The sliding surface is usually defined as linear homogenous algebra 

equations about the plant state. Thus, the sliding surface, combined with linear part of regular form of 

the system state-space equations, produces stable and desirable system performance simply by using 

linear system design approaches. For step input, the sliding function is defined as  
 

1 1 1 1 1 1 0 )c c c

EQ EQ EQs c F x F x c F x x      = ( ) +( ) = ( ) P (X X
                    

(3.5)
 

 

where 
T

0 0c

EQF  X = , 1[ 1]c P  and c1 is a design parameter which can be determined by 

pole placement method with s=0. It should be noted that the next equal sign of Eqn. 3.5. exists because 

of step input. 

 

The next step is to determine the control law to drive the state variables of controlled system onto the 

sliding surface. Lyapunov direct method is employed herein. The Lyapunov function takes the form of 
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The sufficient condition for the sliding surface S=0 to occur as t→∞ is 
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Essentially, Eqn. 3.7. states that the squared “distance” to the surface, as measured by s2
, decreases 

with time. Obviously it is desired that system state remains on the surface, once it reaches sliding 

surface. Then the dynamics on the sliding surface is expressed as 
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With the above equation, we obtain the expression for ue, which is called the equivalent control and 

denoted by ueq, as 
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It can be interpreted as the continuous control law that will maintain =0s if the dynamics, particularly 

nonlinear part, are exactly known. To attain asymptotic stability, v  is required to be negative definite 

by Lyapunov Theorem, i.e., 0v   for 0s  . This can be easily achieved by a continuous control law 

which takes the form as 
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However, the function f denoting system uncertainty is generally unknown, and then the above control 

can not be implemented in practice. To resolve this problem, the continuous control is replaced by a 

discontinuous one which is given by 
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in which, sgn(s) is a sign function, i.e., sgn(s)=s/|s|; k is determined by  
 

+k = -F                                                                (3.12) 

 

where η is a strictly positive parameter; F is the bound for T fP H , i.e., 
T f FP H . It is instantly 

seen that v  is negative definite, simply by substituting Eqns. 3.11. and 3.12. into Eqn. 3.7., which 

gives 
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To keep the system state on the sliding surface once it is reached, and avoid chattering problem at least 

theoretically, sgn(0) should take the value such that 0s  , i.e., 
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With Eqns. 3.6. and 3.13., it can be proved that the sliding surface s=0 is asymptotically stable. 

However, the Lypunov theorem can not be applied directly because v  is not a function only 

dependent on s, but also dependent on X. Utkin (1992) presented an analog to Lyapunov theorem to 

determine sliding mode domain. For the case in this paper, a much simpler proof is provided in the 

Appendix. 

 

Notice that state vector X includes the first derivatives of the equivalent force
m

EQF , which can not be 

determined through measurement directly. Kalman filter is used herein for state observing; 

the corresponding mathematical model of the observer is expressed by the state-space 

equation as 
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in which Tˆ ˆ ˆ=[ ]m m

EQ EQF FX is the observed state vector, and Ke is the Kalman gain matrix.  

 

Fig. 3.1. shows the block diagram of equivalent force control system with the discontinuous sliding 

mode controller. 

 

 

4. CHATTERING PROBLEM AND ITS REMEDY 

 

4.1. Statement of problem 

 

By substituting Eqn. 3.14. into 3.11., the control effort on the sliding surface is obtained as 
 

T 1 T T )eu f= P B (P AX + P B（ ）                                                (4.1) 

 

This exactly the same as the equivalent control as shown by Eqn 3.9.. But unfortunately, the value of f 

is generally unknown even on sliding surface. This means that Eqn 3.8. is not satisfied, i.e., 0s   on 

the sliding surface. So when the system state reaches the sliding surface, it will not stay on the surface 

but tend to cross the surface. But once it goes off the surface when switching in Eqn 3.11. is not 

infinitely quick, it will again be driven back, according to the stability theorem of sliding mode. Thus 

the so-called chattering problem is resulted. Because there always exists some delay in the switching 

mechanism, chattering is evitable in practice of sliding mode control. But chattering effect can be 

reduced by various approaches, one of which is described below. 

 



 

 

 

4.2. Remedy of chattering 

 

The chattering problem can be eased by adding the second term of the right-hand side of Eqn. 3.10. to 

3.11., which results in 
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Substitution of the above into Eqn. 3.8. gives 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1. Block diagram of EFC with sliding mode controller 
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From the above two equations, we see that the last term of Eqn. 4.2. can be viewed as an extra control 

effort to drive the system state back to the sliding surface: the farther the state deviates from the 

surface, the more the control effort is added and the faster the state goes back to the sliding surface. In 

this way, the deviation from the sliding surface is further restrained and hence the chattering is eased. 

 

Although the chattering can be reduced by Eqn. 4.2., switching in control with the high frequency and 

large amplitude may bring damage to the hardware of control system. To this end, the boundary layer 

solution can be used. The control Eqn. 4.2. is replaced by a saturation function which approximates the 

sgn(s) term in a boundary layer of the sliding surface s=0, which reads 
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where Φ is the thickness of the boundary layer of the sliding surface s=0. With boundary layer method, 

the inherent robustness properties of sliding mode control systems are retained, while the undesirable 

chattering of the sliding mode is eliminated, but the invariance characters of the sliding mode are lost. 

Therefore, for a realisable control law for servo-hydraulic actuator, a trade-off must be made between 

control bandwidth and tracking precision 
[1]

.  

 

 

5. NUMERICAL SIMULATION 

 

Numerical simulations are conducted in the time domain with Matlab
TM

. Two examples are presented 

below: one has a linear spring as the physical substructure and the other has a bilinear 

buckling-restrained brace (BRB) specimen as the physical substructure. 
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5.1. Spring specimen 
 

The parameters of a linear SDOF structure adopted for the numerical simulations are: 

MN=114.5×103kg, KN=2.26×106N/m, KE=2.26×106N/m, CN=0, and CE=0, which result in a structural 

period of 1s. The parameters of actuator are: KP=3, KI=3, KΔP=0.0002,βE=6.895kN/m, V=0.0069m
3
, 

AP=0.0248m
2
, P=20.34MPa, and k0=1.0674m

2
/s. The integration time interval is 0.02s. 

 

Control law specified in Eqn. 3.10. is employed for this linear case. For simplicity, only two 

parameters c1 and δ of sliding mode control are studied in this case. The EF responses of the EFC 

system subjected to a unit step EF command with different parameter c1 of sliding function are shown 

in Fig. 5.1a. From Eqn. 3.5., we see that c1 determines the speed of x1 on the sliding surface to 

approach target Fc
EQ; the larger the c1 is, the quicker the x1 tracks Fc

EQ. This exactly agrees with Fig. 

5.1a. Fig. 5.1b. shows the effects of δ. It is see that δ determines the settling time of the system 

trajectories; the larger δ is, smaller the settling time will be.  

 

   
 

a) Effect of c1                        b) Effect of sliding margin δ 

Figure 5.1. Step response with spring specimen 

 

5.2. Bilinear elasto-plastic specimen 
 

The parameters of the structure and actuator are the same as last section except that the experimental 

substructure is elasto-plastic. The initial stiffness of the specimen KE=2.26×10
6
N/m, the yielding 

displacement is 2mm, the second stiffness coefficient is 5.81%. The integration time interval is 0.01s.  

 

Fig. 5.2. shows the step responses subjected to equivalent force command of 3×10
4
kN with the 

discontinuous controller, whose parameters are: c1=500, δ=0 and k=3×10
13

. The yielding displacement 

is deliberately reduced to 0.02mm for the case of step input. The maximum displacement response of 

the actuator is about 0.026mm, which is larger than the yielding displacement. The maximum of 

nonlinear part f of system dynamics is about 2.4×10
10

, which is smaller than k, and this indicates that 

the Lyapunov stability is satisfied. From Fig. 5.2., we see the obvious chattering of equivalent force 

response and drive voltage of the servo valve. To ease the chattering, we set δ =10
7
. The results are 

shown in Fig. 5.3., where we clearly see the significant suppression of chattering of the equivalent 

force as well as the servo-valve voltage. The chattering is further reduced by using boundary layer 

with the parameter Φ=10
7
, which is shown in Fig. 5.4. 

 

The seismic responses subjected to El Centro (NS, 1940) Earthquake are shown in Fig. 5.5.. The 

parameters of the controller are the same as the case with boundary layer. It is seen that the equivalent 

force responses track the command well, and the displacement responses match the exact solution very 

well. The maximum displacement response is nearly 6 mm which is larger than the yield displacement 

of 2mm, indicating the specimen well goes into nonlinear range.  

                                                                                                                                                                 



 

 

 

 
a)Equivalent force response                   b) Servo-valve voltage 

Figure 5.2. Step response with elasto-plastic specimen (δ=0) 

 

 
a) Equivalent force response                          b) Servo-valve voltage 

Figure 5.3. Step response with elasto-plastic specimen (δ=10
7
) 

 

 
a) Equivalent force response                 b) Servo-valve voltage 

Figure 5.4. Step response with elasto-plastic specimen (Φ=10
7
) 

 

  
a) Equivalent force                     b) Displacement 

Figure 5.5. Seismic response with elasto-plastic specimen 



 

 

 

6. CONCLUSIONS 

 

The sliding mode controller has been proposed for equivalent force control in the hybrid testing with 

nonlinear specimens. The design of the sliding mode control is presented and the stability is discussed. 

The effects of key parameters on the performance of sliding mode controller are demonstrated through 

numerical simulation. The results show the good tracking capacity in spite of strong specimen 

nonlinearity, and the chattering problem is resolved by choosing proper controller parameters.    
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APPENDIX:  STABILITY THEOREM OF SLIDING MODE 

 

For convenience of discussion, we list the Lyapunov theorem using the notation for the case in this 

paper. 

 

Lyapunov theorem for asymptotic stability 
If there exist a scalar function v(s) with continuous first partial derivatives such that 

(1) v(s) is positive definite 

(2) ( )v s is negative definite  

Then the equilibrium point X=0 is asymptoticly stable. 

 

It is important to notice that the Lyapunov function and its time derivative on the above theorem are 

solely determined by their independent variable s. For the Lyapunov Eqn. 3.6., its time derivative Eqn. 

3.7. is not a function of s, since it also includes the system variable X. To deal with this problem, we 

need to consider the characteristics of time derivative of sliding function, i.e. Inequality 3.13.. Keep 

this inequality in mind, we prove the asymptotic stability of sliding surface by contradiction. 

 

Since v is lower bounded, i.e., v0, and decreases continually, v tends towards a limit L. Assume that 

this limit is not zero, i.e., L>0. So there exists a range (-r, r) where r is a positive number, which s(t) 

never enters, since v is continuous about s and v(0)=0. Note that v  is also continuous about s, 

although s  is discontinuous on at s=0. Then, because v  is negative definite 

and 02 2s v v  (v0 is the initial value of v), v  must be less than a negative number L1. This is 

contradiction, because this would imply that v will reach 0 in a finite time smaller than v0/|L1|. 

Therefore, v tends towards 0 and hence so does s.  
 


