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SUMMARY: 
Problem of foundations located on slopes have been the subject of many studies. However, such foundations are 
usually considered to undergo non-repeated non-variable loads. In many situations, foundations are under 
repeated variable loads either statically or dynamically. In this paper, lower bound shakedown theory is 
employed to evaluate the safety factor of foundations placed on the slopes subjected to repeated loads. Static and 
dynamic repeated loads are supposed to be applied on the foundations and safety factor are determined for each 
case separately. Foundations are supposed to be shallow and rigid. Soil is supposed to obey the Mohr-Coulomb 
yield criteria. It is shown that ignoring the repetition of loads may lead to overestimating the load capacity of 
foundations on slopes. 
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1. INRODUCTION 
 
In practice, there are many situations where pavements, foundations of  retaining walls, machinery 
foundations and so on that have to be located on or adjacent to slopes. Most available literature 
concerned with the evaluation of bearing capacity of slopes for the static case (Meyerhof, 1957, 1963; 
Hansen, 1970; Vesic, 1973). Besides, limited works devoted to foundation on slopes subjected to 
dynamic loads and in particular earthquake loads. Zhu (2000) used upper bound limit analysis and 
earthquake reduction factor to determine bearing capacity of foundations on sloping grounds. Seismic 
bearing capacity of foundations on slopes was investigated by Kumar et.al. (2003) using stress 
characteristics method. 
   
Some foundations such as the offshore platforms and machinery foundations bear repeated loads 
statically or dynamically. Foundations like that, might fail under loads much smaller than their 
collapse load. A trivial solution for such cases is to conduct a step-by-step load-displacement 
nonlinear analysis of foundation-slope system, considering all repeated loading program which 
obviously is time taking and uneconomical. Another alternative is shakedown analysis.  
 
Shakedown method is a subset of limit state method. It's most important advantage over other limit 
state methods is the ability of considering the repeated loads. Analogues to limit analysis, shakedown 
theories are presented in the forms of lower bound and upper bound. Besides both lower bound and 
upper bound theories have been develops for static and dynamic repeated loads.  
 
Static shakedown theory was first introduced by Melan (1938). Koiter (1956) developed upper bound 
shakedown theory for static loading. Dynamic shakedown was pioneered by Ceradini (1969) for 
structures subjected to inertial variable loading. Maier (1969), utilizing finite element method and 
linear programming, converted shakedown theory to an optimization problem. The objective of 



Maier's solutions was to maximize a factor multiplied to all possible loadings on the structure. This 
factor is referred to load factor or shakedown factor of safety.  
 
Applications of shakedown theory in geotechnical engineering mostly concerned with pavements 
under traffic loads (Hossain and Yu, 1996; Yu and Hossain, 1998; Shiau, 2001). Foundation 
shakedown of offshore platforms under vertically applied dynamic loads was studied by Haldar et al. 
(1990), employing upper bound shakedown theory. However, their research was concentrated on the 
effect of pore water generation due to shakedown of the footing-soil system. Faria (2002) investigated 
foundation shakedown of an offshore platform under combined static loads. Arvin et.al. (2011) studied 
shakedown bearing capacity of foundation on horizontal ground using lower bound shakedown 
method. They used a numerical method developed by Yu and Hossain (1998) for pavement static 
shakedown and extended later by Arvin et al. (2012) to determine the safety of slopes under repeated 
seismic loads, for determination of bearing capacity of foundations subjected to repeated static and 
dynamic loads.  
 
The present study aims to determine the bearing capacity of foundations on slopes subjected to static 
and dynamic repeated loads. Lower bound shakedown method is employed herein using the method 
utilized by Arvin et.al. (2011). 
 
 
2. SHAKEDOWN THEORY 
 
The lower bound static shakedown theorem states that: 

Shake down will occur, if a (constant) selfstress state rσ exists such that superposition of this state 
and the elastic response to the given loading program at all elements and instants leads to stresses 
below the yield limit (Maier, 1969).  

 

The lower bound dynamic shakedown theorem states that: 

If a fictitious response ( ) ( ) ( )txtxtxu ijiji ,,,,, ∗∗∗ σε  (displacement, strain and stress respectively) and a 

time independent residual stress field ( )xr
ijσ  can be found such that: 

( ) ( )( ) 0, ≤+∗ xtxf r
ijij σσ                                                                                                         (2.1) 

Then, shakedown will happen at real response (Ceradini, 1980). 

A fictitious response is any elastic solution of systems due to external repeated actions including 
external forces and strains. It is called fictitious firstly because it is purely elastic and secondly is not 
obtained necessarily for the real initial conditions. The real response is what actually happens for the 
systems in reality under variable repeated loads.  

Dynamic shakedown theory can be stated in mathematical form as: 

( ) ( )( )
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In this study the Eqn. 2.2 is solved by linear programming approach. 



3. NUMERICAL METOHD  
 
Based on shakedown theory, two separate steress field, namely elastic and residual stress field must be 
established. Then, the aforementioned stress field are involved in the optimization process to find the 
best (maximum) load factor λ. The numerical method employed by Arvin et.al. (2011) is utilized to 
optimize the results. In the following a brief description of the applied numerical method is presented. 
 
 3.1. Elastic Stress Field 
 
A vertical static or dynamic load is supposed to be imposed on a rigid smooth strip footing resting on 
top of a slope. The system is discretized by triangular elements using the mesh generation ability of 
Plaxis software (Fig. 3.1). Load is applied on the node A in the middle of the foundation as depicted 
on Fig 3.1. All nodes under the foundation are assumed to move vertically with the same amount. 
Therefore, displacements of nodes under the footing are tied to that of node A.  
 

 
 

Figure 3.1. Typical footing-slope system considered in the present study 
 
The governing equation of an elastic system under external dynamic loads is as follows. 
  

( )tPKuuCuM =++ &&&                                                                                                   (3.1) 

Where M, C and K are mass, damping and stiffness matrices respectively. P(t) is the time dependent 
dynamic load which is imposed on node A (Fig. 3.1). For elastic analysis, M and C are eliminated 
from Eqn. 3.1 and P is considered as a constant load. Classic damping is considered. That is, damping 
matrix is the linear combination of mass and stiffness matrices or KMC ζη +=  where η and ζ are 
constant coefficients, obtained by considering the first and second frequency of the soil mass. 
 
Implicit time integration method of Newmark (Bathe, 1982) was employed to find the solution of Eqn. 
(3.1). Finally, elastic stresses at the corner nodes of the elements were obtained and used in the 
optimization process. 
 
3.2. Residual Stress Field 
 
The same mash developed for the elastic analysis is also considered to obtain residual stress field.  
Residual stresses are supposed to distribute linearly across the elements. Stress discontinuity lines are 
between elements. Equilibrium equations in the body and on the boundaries must be satisfied for 



residual stresses. In addition, discontinuity conditions have to be obeyed by the stresses along the 
discontinuities. To find more details see Yu and Hossain, 1998 and Arvin, et.al. 2011. 
 
3.3. Optimization 
 
The maximum repeated load that can be applied on the foundation is a portion of available load 
domain and referred to as the load coefficient λ. The aim is to find the maximum value of λ under 
some constraint. The constraints consist of equality constraints and non-equality constraints. Equality 
constraints are composed of equilibrium of residual stresses in domain and on the free boundaries and 
stress discontinuity constraints. Residual stresses and combination of residual and elastic stresses 
everywhere and at any time must be inside the yield surface. Using the piecewise linearized Mohr-
coulomb yield criteria developed by Sloan (1998), required inequality constraints are obtained. 
 
Since objective function and constraints are of linear type, linear programming approach (simplex 
method) is employed to solve the problem. At the end of optimization process, load factor and residual 
stress field are determined. For further details detail see Yu and Hossain, 1998 and Arvin, et.al. 2011. 
  
  
4. RESULTS 
 
In order study the effects of ground inclination and load repetition on bearing capacity of strip 
foundations some illustrative examples were considered. 
 
4.1. Illustrative Examples 
  
A rigid strip foundation is considered to be placed on the tip of a slope. The foundation width and 
slope height were taken as 1m and 4m respectively (Fig. 3.1). Two different slope inclination angles 
i=45° and i=60° were considered to study the effects of ground inclination on the foundation bearing 
capacity. Load is applied on the center point of the foundation as a unit linear load for static analysis 
and as a linear unit sin load for dynamic analysis. Plaxis standard boundary conditions were imposed 
on the boundaries. Side boundaries were placed far enough so that the effects of boundaries on the 
results became negligible. Poisons ratio was assumed to be 0.333 for all examples resolved in the 
present study. 
 
 
4.2. Statically Applied Load 
 
Standard form of bearing capacity equation consists of cohesion factor Nc, embedment factor Nq and 
weight factor Nγ. To investigate the load repetition on static bearing capacity of foundations on slopes, 
a unit weight was employed in the center of the footing. Then numerical approach described in section 
3 was performed to find λ value. Obviously for a weightless cohesive soil, the obtained λ value is 
directly equal to Nc. Using aforementioned strategy, Nc values were obtained for i=60° and for 
different internal friction angle by shakedown analysis. Nc values in Elastic limit and in plastic limit 
were also obtained for the same footing-slope system. The results were shown in Fig. 4.1.  
 
As Fig. 4.1 shows, shakedown limit is less than collapse limit and bigger than elastic limit. It shows 
clearly that foundation under repeated load cannot be treated like those under monotonic loads. 
Besides, Nc increases with increase in internal friction angle.   



 
Figure 4.1. Nc values vs different φ for footing on slope with i=60°  

 
 
In Fig. 4.1, elastic limit was obtained by elimination of residual stress field in the optimization 
process, while collapse limit are illustration of Hansen (1971) results. 
Effects of slope inclination angle on shakedown bearing capacity of foundations were examined by 
calculating Nc values for i=45°, i=60° versus different values of φ. Results of the present study were 
presented along with the values of Nc for i=0° derived from Arvin. et.al. (2011) in Fig. 4.2. 
 

 
Figure 4.2. Nc values vs different φ for footing on slopes with  

different inclination angles  
 
Results show that raise in slope inclination angle leads to reduction of footing bearing capacity. 
 
4.2. Dynamically Applied Load 
 
According to shakedown criterion, the footing is safe if it finally settles to elastic state against 
repeatitive prescribed dynamic load. In general situations, when time history of dynamic load 
repetition is unknown, dynamic load may be conceived as an inertial load repeated virtually in time. 
An imaginary sufficient time between two subsequent loadings is assumed during which, motion 
caused by the previous loading cease to develop due to material damping (Fig. 4.3) 
 



 
Figure 4.3. Two successive half-sine loads (solid line) and imaginary reloading (dashed line) considered 

to evaluate dynamic shakedown limit load of footing in this study (Arvin. et.al., 2011) 
 
For the present study, as shown in Fig. 4.3, vertical dynamic loading is considered as a number of 
successive half-sine loads, applied on the center of footing. The peak value of load is equal to unity.  
Number and period of the load for each loading can be different and depend on the situation.  
 
Results of dynamic shakedown analysis were presented against parameter Ts/Tm where Ts is the 
dominant period of slope and Tm is the mean period of dynamic loading. To produce different values 
of Ts/Tm for a specified footing-slope system (in terms of geometry and material properties), variety of 
loads with different Tm were considered. 
 
In order to verify the effects of ground inclination on the results, dynamic shakedown bearing capacity 
of footings were calculated for i=45°, φ=10°, n=2 , γ=20 KN/m3 and DR=5%, where n is the number 
of successive half-sin load and DR is damping ratio. Results are presented as λP/c versus Ts/Tm in Fig. 
4.4. Results for i=0° were extracted from Arvin. et.al. (2011). 
 

 
Figure 4.4. λP/c values vs Ts/Tm for footing on slopes with  

i=45° and i=0°, n=2 and soil properties DR=5%,  
γ=20 KN/m3 and φ=10° 

 
As Fig. 4.4 shows, unlike static shakedown bearing capacity which is independent of soil and load 
dynamic properties, the shakedown dynamic bearing capacity is greatly influenced by Ts/Tm. Bearing 
capacity first experience a reduction when Ts/Tm increases and then rises upward. The minimum value 
of  λP/c occurs at about Ts/Tm=1 where resonant happens. Besides, greater slope inclination angle 
results in reduction of dynamic shakedown limit of footings.  
 
 
 
4. CONCLUSIONS 
 
Effect of repetition of static and dynamic loads on bearing capacity of rigid smooth footings resting on 
top of a slope were investigated using lower bound static and dynamic shakedown analysis. 
Shakedown theory was employed as an optimization process in the form of linear programming. 
 



The following are the main conclusions made from the present study: 
1- Static shakedown limit of footings on slopes lies between its elastic limit and its collapse limit. 

 
2- Static shakedown limit of footings decrease with increase of slope inclination angle. 

 

3- Static shakedown limit of footings on slopes is not influenced by dynamic properties of loads 

and subsoil. 
 

4- Results show that dynamic shakedown bearing capacity of  foundations on slopes first 
decrease with Ts/Tm and then ascend upward so that the minimum value of bearing capacity 
occurs at  Ts/Tm=1 where resonance happens. 
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