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SUMMARY:
An important step in the Probabilistic Seismic Hazard Analysis (PSHA) consists in defining the seismic source  
model. Given that  most of the faults,  in low seismic regions,  are not characterized well  enough,  the source 
models are defined as areal zones, delimited with finite boundary polygons, within which the seismicity and the 
geological features are deemed homogeneous, leading to different problems.

We investigate an alternative approach, using Bayesian methods, to model the seismotectonic zoning, with two 
main objectives: 1) obtain a reproducible method that 2) preserves the information on the sources and extent of 
the uncertainties. We start with two zones, characterized by two different surface activity rates. The inference of  
this model allows us to recover the geographical limit between this zones. Future work will strive to incorporate 
all available data, such as structural data, and to extend this model to n zones with a unspecified shape.
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1. INTRODUCTION

Several studies have shown the determinant impact of seismotectonic zoning in Probabilistic Seismic 
Hazard Assessment (PSHA) (Beauval, 2003; Beauval and Scotti, 2004; Bender, 1986; Le Goff et al.,  
2009; Woo, 1996). The seismotectonic zoning allows to link the seismicity with the tectonically-active 
geological structures, in order to define sources for use in PSHA computation. Usually, and because  
faults are often not characterized well-enough, source zones are defined as surfaces and modeled as  
polygons.  In that case, they are delimited with fixed, infinitely thin boundaries. In each zone, the  
geological  expression of  active tectonics  and the seismicity are deemed homogeneous  (e.g.,  focal  
depths  and  mechanisms,  seismicity  rate,  and  maximum magnitude),  and  each  point  of  a  zone  is 
considered an equally likely source of earthquake.

Besides the lack of data (e.g., short period of instrumental observation of small events, short catalog of  
large events, blind faults), the establishment of a traditional seismotectonic zoning generates different 
shortcomings.  The finite  boundaries of the different  zones  are set  by expert  decisions,  leading to  
different problems : 1) the superposition of a resulting hazard map with areal source zoning model  
underlines the large sensitivity of the results to this method (Beauval, 2003); 2) it is not reproducible:  
different experts come up with different zonings using the same input data. 3) the final seismotectonic  
zoning is not provided with error maps reflecting the original density of information used for both the  
assessment of the common characteristics and the calculation of seismicity rates of each zone.

Some  approaches,  such  as  the  K-means  method  for  region  partitioning  (Weatherhill  and  Burton, 
2009),  strive  to  resolve  these  shortcomings  but  are  still  not  satisfying,  because  of  their  lack  of  
robustness (problems determining the optimal number of clusters and the initial cluster centers and 



may lead to a local optimum instead of a global optimum partition) and the fact that, at best, only the 
seismic  catalogs  and the focal  mechanisms  are  used.  In  order  to  avoid  the abrupt  change  in  the 
seismicity rate at source boundaries, observable in the resulting hazard map, Bender (1986) proposes  
to use standard "hard" seismotectonic zoning but to provide smoothing using the epicenter location 
uncertainty,  considered normally distributed.  A point  source will  contribute  to  the  seismicity rate 
calculation  of  several  zones,  according  to  its  epicentral  location  uncertainty.  In  that  paper,  the 
assumption  on  the  location  uncertainty  characterization,  arbitrary  defined  by  0,  10,  25  and  50 
kilometers, is questionable. Each event has its own location uncertainty,  depending on its position  
related to the seismic network and its date of occurrence (improvement of seismic station accuracy and 
network density).

This paper aims to propose an exploratory study for alternative procedures in area source modeling.  
We search to obtain a method which will be robust and reproducible. In this way, we strive to combine  
different  data  using  Bayesian  methods.  We  start  to  develop  a  generative  model  with  two zones, 
characterized by two different surface activity rates, creating synthetic catalogs drawn from a Poisson  
distribution  as  occurrence  model,  a  truncated  Gutenberg-Richter  law  as  magnitude-frequency 
relationship and a uniform spatial distribution.  The inference of this model allows us to assess the 
minimum number of data, nmin, required in an earthquake catalog to recover the activity rates of both 
zones and the geographical limit between them, with some confidence. In the first sections, we see the 
data  used to  develop a seismotectonic  zoning (section 2) and its  use  in the  Probabilistic  Seismic  
Hazard Assessment (PSHA) (section 3). Then, we describe the method developed to obtain the limit  
between the two zones (section 4) and present some conclusion. Future improvements of this method 
will  strive  to  reduce  the  minimum  number  of  data,  nmin and  to  extend  the  model  to  n  zones  of 
polygonal shape (section 5).

2. INPUT DATA

Different data sets are traditionally used in order to establish a seismotectonic zoning. These data are 
of different kinds and are characterized by different dimensions. The structural geology map contains 
much information about faults (e.g., fault orientations, fault geometry, fault type, tectonic ensembles)  
and has  an important  role  in the  development  of seismotectonic zoning.  Two different  seismicity 
catalogs are used in seismotectonic zoning computations : historical and instrumental. The idea is 1) to  
locate the hypocenters and 2) to compute the focal mechanisms and magnitudes to try and image 
active faults  and characterize the type of faulting (strike-slip,  or  dip-slip faulting).  These catalogs 
contain uncertainties, notably in hypocenter locations and magnitude calculations, and the systematic 
errors (round-off).  Because the evolution of seismic networks is recent the period of instrumental  
observation of small events is short. Other data are useful in the conception of seismotectonic zoning 
in order to have a better constrained model. Indirectly,  geological maps, expressing the age of the  
formations,  trenches,  geophysical  data  and  digital  elevation  model  (DEM)  allow to  improve  the 
location of faults. An example of such composite data sets is shown in figure 1.

Figure 1. 3D diagram representing the useful data for using in PSHA. In this figure, the segmentation is done to 
show the kinds of data and do not express a seismotectonic zoning



In  conclusion,  we  have  2D maps  with  features  such  as  1D fault  lines,  or  dip  angles;  3D points  
(hypocenters resulting from the inversion of seismograms), points on a surface with intensity data; 
borehole or seismic transects intersecting faults.

3. PSHA

As reminded by an INGV open letter,  the best  approach to protect  population and building from 
collapsing  is  not  through  earthquake  prediction  but  through the  application  of  appropriate  safety 
measures. The development of seismic hazard maps provides the specifications required by building 
codes to avoid collapse of buildings and the resulting fatalities, and the information to convey to the  
population the basic concepts of earthquake hazard, awareness, preparedness and response.

There are several approaches to assess seismic hazard in a probabilistic sense. The most widely used is 
the  Cornell-McGuire  approach  (Cornell,  1968;  McGuire,  1976).  It  consists  in  estimating  the 
probability of exceedance of a ground-motion target level at a site, over a given time window. Usually,  
this target level is described by the Peak Ground Acceleration (PGA) or the Peak Ground Velocity  
(PGV). Considering a Poissonian model for earthquake occurrence, it is common to refer to the return 
periods (inverse of the annual rate) instead of the annual rates. According to the application domain,  
these return periods range from 100 to 107 years.

A number of steps need to be completed on the seismicity data before the actual PSHA can take place 
(Le Goff and al., 2009). First, the seismic catalogs have to be homogenized in a common magnitude 
scale.  Second,  the  seismicity  is  usually  modeled  as  a  succession  of  independent  events  (with  a  
Poissonian distribution of inter-event times), meaning that there is neither foreshocks, aftershocks, nor  
triggered  events.  The  catalogs  have  to  be  filtered.  Third,  from all  available  seismic  events  and 
seismotectonic data,  a  seismotectonic zoning is  achieved in  order to identify and characterize the  
source of seismicity. A ground motion prediction model is used to estimate exceedance probability of 
a target level and for a given magnitude/distance. Finally, the exceedance probability contributions of 
all couples magnitude/distance are summed up.

Beyond  random  (aleatory)  uncertainties,  intrinsic  to  data  (e.g.,  catalog  uncertainties),  epistemic  
uncertainties are generated when the choice of different parameters or models is done. Beauval (2003, 
2004) has demonstrated that both the truncation of the predicted ground-motion model and the choice  
of the magnitude-intensity correlation are dominant with respect to the level of hazard inferred. In 
terms of spatial distribution of hazard, the impact of the location of seismotectonic zoning boundaries 
is  what  matters  most.  Usually,  these  epistemic  uncertainties  are  accounted  for  using  a  logic  tree 
approach where each branch is weighted by an expert or a panel of experts. 

The choice to focus this study on the seismotectonic zoning is due to the impact of its source zone  
boundaries into the hazard map. Moreover, the current seismotectonic zoning model does not allow to 
represent  any  variation  in  faulting  mechanism.  The  assessment  of  seismotectonic  zoning  is  not  
reproducible.  Indeed,  different  experts,  using  same  data,  provide  different  zoning,  based  on  their  
differing interpretation.

4. 2-ZONE INFERENCE

4.1. Introduction

The seismotectonic zoning is generally used in regions where the seismicity is low to moderate or  
where  most  of  the  seismogenic  structures  are  not  known.  However  this  approach presents  some  
limitations. For example, the expert decisions used to achieve this zoning are not traceable back to the  
data that dominated the decision-making. Moreover, no information on the uncertainties are provided.  
The objective of our model is to use a suite of data sets, from different domains, including tectonic and  



geologic information. We choose the Bayesian methods in order to define the generative model, using, 
first, the earthquake locations and time of occurrence. This model can be inverted (inference) to obtain 
the  posterior  probability  of  the  target  variables,  as  the  geographic  limit  between  zones  or  the  
characteristic of each zone. This posterior probability may be updated when new data is available.

4.2. Graphical model

The graphical model constitutes a guide to define the joint probability. In such a generative model,  
each node represents a random variable, parameter of our study. An arrow pointing from a node to 
another expresses the dependency between these two nodes, expressed as a conditional probability 
density function. The black arrows show the generative model  or direct model  while the red ones 
express the inference model (Figure 2).

Figure 2. Graphical model for generating synthetical catalog. Black arrows represent the causal relationships 
between the different parameters of the forward model. The red arrow represents the inference,
 which allows to estimate the limit between geographical zones and their seismic activity rates.

For the jth zone, the seismicity rate is generated from the surface seismicity rate and the size of the  
zone, which depends on the limit between the two zones. Then, this seismicity rate is coupled to a  
Poisson model to determine the different times of events. The seismicity rate and the observational  
period allow to define the number of earthquakes, I, in the zone j. The limit between the two zones is  
also used to obtain the different locations of the I j events, drawn in a uniform spatial distribution. Both 
times  and  locations  are  used  to  generate  the  synthetic  catalog.  The  inference  provides  the  joint  
probability of the model and, after marginalization, provides the optimal value for the location of the  
limit between the two zones and the surface seismicity rate in each zone.

4.3. Synthetic catalog

A synthetic catalog is generated in order to control the input parameters of the model and to have an  
idea on the expected results. A series of synthetic catalogs was generated in order to test the resolving  
power of the method, in a controlled case, where the input parameters, the temporal occurrence and 
spatial occurrence models are known.

4.3.1. Temporal repartition of the events
Even though the Poisson model is often discussed for individual faults (e.g., Zöller et al., 2007; Kuehn 
et al., 2008; Fitzenz et al., 2010), this distribution is generally considered to model the distribution of 
inter-event times for earthquakes in a large region, regardless of their magnitude. This model implies 
that the probability of occurrence of an earthquake does not depend on the elapsed time since the last  
earthquake.  The events  are  then considered independent  of  one another,  i.e.,  that  there  is  neither 
foreshocks, aftershocks, nor triggered events.

The cumulative distribution function of the Poisson law, expressing the probability to have at least one 
event in the time interval t, is defined as follow:



F (Δ t )=1−e−λΔ t (4.1)

t is the time interval between two events; λ is the seismic activity rate.

The seismic activity rate, λ, is generated from the surface seismicity rate of the j th zone and the limit 
between the 2 zones.  For the jth zone,  the sampling of the Poisson law provides the times of the 
different events, ti

j, and the number of events, Ij, during the given observational time Tobs and according 
to the seismic activity rate, λj.

4.3.2. Spatial repartition of the events
In PSHA, the uniform spatial model is usually used into a source zone. This source zones are then 
considered  as  homogeneous,  implying  that  an  event  may  occur  anywhere  within  the  zone.  This 
assumption implies that a part of a zone, with a low seismic activity in reality, may be modeled as 
allowing  the  presence  of  a  large  number  of  earthquakes  with  large  magnitudes  (Musson,  2004). 
Moreover, with few data, some events may appear to line-up and be considered as tectonic structures.  
In such a case, it is difficult to differentiate a zone with a sparse seismicity (background seismicity)  
from a zone with a seismicity associated to tectonic structures. However, to begin with a simple case, 
the uniform spatial model was simulated. 

4.3.3. Magnitude-frequency relationship
The chosen frequency-magnitude model is the truncated exponential model. It expresses the fact that 
the proportion of larger earthquakes compared to smaller ones is linear over the whole size range  
encountered in a region, until a roll-over for magnitudes close to the maximum magnitude. This roll-
over is used to prevent the maximum magnitude from becoming infinitely large as the time window 
considered  increases.  It  provides,  for  a  given  magnitude  M,  the  annual  number  of  event,  λ,  of 
magnitude larger or equal to M. This relationship may be express as follow:

λ=λmin . e−β(M −M min)−e−β(M max−M min)

1−e−β(M max−M min)
(4.2)

λ:  annual  number  of  events  with  magnitude  larger  than  M;  λmin:  annual  number  of  events  with 
magnitude  larger  than  Mmin;  Mmin:  minimal  magnitude  considered  on  the  study;  Mmax:  maximal 
magnitude considered possible in the zone; β: coefficient of exponential decrease

The different magnitudes are generated from the seismic activity rate, , and attributed to each events i  
of the J zones. According to the sampling, the samples may present a more or less good fit with the  
theoretical  magnitude-frequency  law,  and  the  extrapolation  of  the  b-values  and  the  maximum 
magnitude from a catalog realization may lead to a large variability (Page, 2011).

4.3.4. Inference
The Bayesian inference is a probabilistic method which consists in calculating the plausibility of a  
hypothesis. Its computation is derived from the Bayes’ theorem. In the Bayesian sense, a probability 
may be interpreted as a numerical translation of a degree of belief. In this case study, the inference  
allows, from the synthetical catalog, to recover the pdf for parameters of interest. A first step is the  
definition of priors, expressing the degree of belief about a random variable before taking into account  
the data. Then the method consists in evaluating the posterior probability of the model. According to 
Bayes’ theorem, the posterior probability is proportional to the joint probability and one can determine 
the optimal value of the parameters and also the covariance matrix. The joint probability expresses the 
relationship between all  the  elements  of the  model.  If  the number  of  zones,  J,  is  fixed,  the  joint  
probability may be expressed as follow:

P j=P(λ j
S , x lim ,

j λ j , t i
j , x⃗ i

j , Spat.Mod j , Temp.Mod j) (4.3)



P j=∏ j=1

J
P (λS

j ). P (x lim.
j ) . P(λ j /λS

j , x lim.
j ) . P( ti

j / ti−1
j ,λ j ,Temp.Mod j)

. P (x i
j / xlim.

j , Spat.Mod j) . P( yi
j /Spat.Mod j)

(4.4)

In our case J=2, so:

Priors=P (λS
1) . P(λS

2) . P ( x lim.) (4.7)

Because there are more nodes in the graphical model than the parameters and observations, we have to 
integrate the complete joint pdf with respect to all  the intermediate nodes. This step is  called the  
marginalization step.

Marginalization with respect to λ:

P (λ j /λS
j , xlim.

j )=δ(λ j−(λS
j . x lim.

j . Lymax)) (4.5)

P (λ i
j , x lim ,

j t i
j , x⃗ i

j , Spat.Mod j ,Temp.Mod j)=∫ P j . d λ j (4.6)

and we obtain:

P (λS
1 , λS

2 , x lim. , x⃗ i
1 , x⃗ i

2 , t i
1 , ti

2)=Priors .(λS
1)I1 .e(−λS

1 . x lim. . Lymax .∑i=0

I 1

(ti+1
1 −t i

1))

.(λS
2)I 2.e(−λS

2.(Lxmax− x lim.) . Lymax .∑i=0

I 2

(ti+1
2 −t i

2))
(4.7)

Marginalization with respect of λ1
S and λ2

S :

Pm=Priors .(λS
1)I1 .(λS

2 )I 2. e−λS
2 . Ly max. Lx max.∑i=1

I2

(ti+1
2 −ti

2 ).− 1
a

. e−a.Lx max+1
a                (4.8)

with: a=λS
1 . Lymax .∑i=1

I1

(t i+1
1 −t i

1)−λS
2 . Lymax .∑i =1

I 2

(t i+1
2 −t i

2)

4.3.5. First results
In order to obtain a clearer representation, the results are expressed as the energy, corresponding to 
-log(Pj). The optimal value of the inference corresponds to the minimum of the energy function and 
represents the optimal value of the considered parameter. The different equations are then expressed as  
follow:

U P j
=−log( Priors)−I 1 . log(λS

1)+λS
1 . x lim. . Lymax .∑i=0

I1

( ti+1
1 −ti

1)

−I 2 .log(λS
2)+λS

2 .(Lx max− x lim.). Lymax .∑i=0

I 2

( ti+1
2 −ti

2)
                   (4.9)

U P m / λS
1, λS

2=−log( Priors)+I 1.log(K 1.∑i=0

I 1

( ti+1
1 − ti

1))− I 1. log( I 1)+I 1

+I 2. log(K 2 .∑i=0

I 2

(t i+1
2 −t i

2))−I 2. log( I 2)+I 2

           (4.10)

with K 1=x lim. . Lymax  and K 2=( Lxmax−x lim.) . Lymax

The first step consists in computing the posterior probability. Then, the Bayesian inference is used to  
obtain the marginal probability and to recover the limit between the two zones. These two zones are  
separated by a contrast in their spatial seismicity density. Several cases with different ratios between 



the surface seismicity rates and different observational periods were tested to observe the behavior of  
the model with the number of data.

The first example (Figure 3a) is a representation of the 2 zones, for an observational period of 100 
years. The limit between the two zones was placed at 20 kilometers, before generating the catalog. For  
these two zones (left part of the Figure 3a and 3b), we calculated the joint probability and plotted the 
energy function (right part of the Figure 3a and 3b). Depending on the number of data, we can obtain a 
minimum value for the energy function, expressing the optimal value for the limit between the two 
zones. We can see, on this example, that the ratio between the surface seismicity rates of the 2 zones  
has to be larger than 3, if we want to reach an optimal value of the limit. Some local minima may  
appear with a few number of data, and it is then necessary to achieve several realizations (Section  
variability).  On  the  second example  (Figure  3b),  the  limit  was  placed  on  the  same  location  (20  
kilometers), but we considered an observational period of 1000 years. The number of data points is  
then higher. On this example and because of the higher number of data, we can reach an acceptable 
solution, defined by an identifiable absolute minimum, with a ratio lower than the first example. Here 
a minimum value of the energy function may be reached for a ratio of 1.5.

Since we obtain an optimal value for the limit, we can evaluate both surface seismicity rates (Figure  
4). The catalog was generated for an observational period of 1000 years and with a limit between the  
two zones at 20 kilometers. On these examples, the surface seismicity rates are 3.10-4 for the first zone 
and 1.10-4 for the second one, for the first case (Figure 4a), and 4.10-4 for the first zone and 1,5.10-4 for 
the second one, in the second example (Figure 4b).

We observe that it is possible to recover the surface seismicity rates used to generate the catalog, with  
a quantitative measure of the uncertainty (including the covariance).

Figure 3. Results of the Bayesian inference to recover the geographical limit between the two zones, with 
different ratio between the surface seismicity rates and for an observational period of

 a) 100 years and b) 1000 years.



Figure 4. Results of the Bayesian inference to evaluate the surface seismicity rate of the two zones. The colour 
variation from the red to the blue represents the decrease of the energy function. The white dots express the true 

values. a) the synthetical  catalog was drawn for an observational period of a) 100 years, with the surface 
seismicity rates of 3.10-4 for the first zone and 1.10-4 for the second zone (optimal values around 3,5.10-4 for the 

first zone and 1,25.10-4 for the second one. b) for an observational period of 1000 years, with the surface 
seismicity rates of 4.10-4 for the first zone and 1,5.10-4 for the second zone.(optimal values around 4.10-4 for the 

first zone and 1,6.10-4 for the second one)

4.3.6. Variability
According to the realization of the catalog, the optimal value may not represent the real solution. It is  
then  important  to  compare  the  distribution  of  the  optimal  values  we  can  obtain.  The  following 
histograms  (figure  5)  express  the  optimal  values  of  the  limit  between  the  two  zones,  for  100 
realizations of catalogs. In the first example (Figure 5a), the 100 synthetical catalogs were drawn for 
an observational period of 100 years and with the surface seismicity rates of 3.10-4 for the first zone 
and 1.10-4 for the second one. In the second example (Figure 5b), the 100 catalogs were drawn for an 
observational period of 1000 years with the surface seismicity rates of 1,5.10-4 for the first zone and 
1.10-4 for the second one.

Figure 7. Distribution of optimal values for the limit from 100 synthetic catalogs, drawn a) for an observational 
period of 100 years and with the surface seismicity rates of 3.10-4 for the first zone and 1.10-4 for the second one 

and b)  for an observational period of 1000 years and with the surface seismicity rates of 1,5.10-4 for the first 
zone and 1.10-4 for the second one

These figures show the importance of using different realization of synthetic catalogs. Indeed, with 
only one synthetic catalog, the optimal value for the limit may be on the tail of the distribution. With  
the distribution shown on the figure 8b, the use of Monte-Carlo draws, with an initial value on the 
right of the distribution, may lead to a local minimum, around 23 Km. In terms of seismic hazard, this  
variability is important. Indeed, a city may be affected to a zone or another, changing its associated  
seismic hazard. Another reason for the importance of this variability is the association of events into 
the  seismotectonic  zones.  Because  of  the  low  to  moderate  seismicity  (implying  the  use  of 
seismotectonic zoning), a major event associated to a zone or another may have a large impact on the  
calculation of the surface seismicity rates.



5. DISCUSSION AND FUTURE IMPROVEMENTS

During about 20 years, the evolution of PSHA in current practice has been slowed down by using 
paying software within which code source is not known and shared. But recently, initiatives have been 
undertaken, first in California with openSHA and after in international-wide with GEM, to propose an 
open source code, making it easier to incorporate new methodologies. The methodology, presented in 
this paper, could therefore be inserted in the hazard calculation process.

Previous assessments of epistemic uncertainties rely on weights given the different models by a panel  
of experts. In contrast, we propose another role for expert panels: the choice of the datasets and the 
priors to be used and the candidate models to be tested. Once these steps are done, the quantitative 
computation  of  the  weights  of  the  models  can  be  performed,  and  is  reproducible.  With  our 
contribution,  we  show how Bayesian  Inference  would  be  useful  in  Probabilistic  Seismic  Hazard 
Assessment. Other authors have pointed that out in the recent past, for renewal models (Biasi and 
Weldon, 2008; Fitzenz et al., 2012, Fitzenz et al, 2010, Fitzenz and al, 2007), or for a general view 
(Esmer, 2006).

The 2-zone-inference model  allows us to determine the limit  between 2 zones, characterized by a 
contrast of surface seismicity rate. It is then possible to evaluate the minimal number of data, n min, 
required to obtain an observable minimal of the energy function. Since we want to investigate seismic 
hazard at a local scale, where earthquakes of magnitudes larger than 5 can happen, we need to go  
beyond  the  point-source  approach.  Furthermore,  we  want  to  integrate  geological  and  tectonic  
information into our zoning to increase its resolving power (in particular allow a good inference of the 
parameters even with few earthquakes).  The maximal fault length,  that depends on fault preferential 
orientation and the limit between the 2 zones, may be use to define the maximal magnitude in the  
draws of the magnitude from the Gutenberg-Richter law. However, the large variability in magnitude, 
drawn from any given Gutenberg-Richter law, may prevent any conclusive result from being reached. 
Then, it is fundamental to go beyond this two zone case and to extend this model to n zones with a 
unspecified shape. To complete this model, all available data should be incorporated.

The smoothing method of Bender (1986) may be adapted  in order to calculate the seismicity rates. In 
our method, the uncertainty, linked to the limit between the zones instead of arbitrary defined for all 
events, will be used to define the contribution of this source to several zones. The fact that a source, 
close to a seismotectonic zoning boundary,  may participate in the calculation of several seismicity 
rates allows to smooth these rates in source zone boundaries. Thus, in proximity to a source zone  
boundary, resulting acceleration levels for two close sites may not differ considerably.

6. CONCLUSION

The objective of this approach is to model a seismotectonic zoning which 1) is reproducible and 2)  
preserves the information on the source and extent to the uncertainties, so as to allow to propagate 
them and issue recommendations for optimized future data acquisitions. An inference with two zones, 
differentiated by two different surface seismicity rates, was performed to obtain the geographic limits  
between them. To obtain an acceptable accuracy on the location of the limit between the 2 zones, the 
ratio of the surface activity rates has to be larger than 3, for an observational period of 100 years.  
Considering an observational period of 1000 years, this ratio fall down to 1.5, because of the higher  
number of data. This 2 zone model will be a reference in the comparison with other models, which  
will incorporate other available data. Future improvements will integrate the preferential orientations  
of faults and the geology as well. Also, we will consider a number n of zones with a unspecified shape. 
We emphasize that such an approach is reproducible once priors and data sets are chosen. Indeed, we 
will  strive to incorporate expert  opinions as priors,  and avoid using expert  decisions.  Instead,  the  
products will be directly the result of the inference, when only one model is considered, or the the 
result of a combination of models in the Bayesian sense.
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