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SUMMARY: 
Satisfying the equations of motion in the deformed configuration leads to actions that inherently contain 

secondary effects. Similar to the product of vertical loads and lateral displacements which leads to the PΔ effect 

in structures, lateral displacements may cause significant secondary torsion due to the presence of lateral loads. 

A simple finite-element formulation is presented in the paper to capture this effect. This formulation is verified 

by means of the Corotational approach and the updated Lagrangian formulation for acceptable drift limits in 

structural engineering practice. A simple single-story structure and a 7-story RC and steel structures with no 

predefined mass eccentricity are subjected to an ensemble of bi-axial ground motions recorded on different soil 

conditions to demonstrate secondary effects. The paper shows that when the period of the structure is not 

identical in the two horizontal directions secondary torsion is important and may result in significant torsional 

amplification. 
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1. INTRODUCTION 

 

Generally, the geometric-stiffness property represents the tendency toward buckling induced in a 

structure by axially directed load components. Thus it depends not only on the configuration of the 

structure but also on its condition of loading (Clough and Penzien, 1993). This concept has been 

developed further here for 3D beam elements by considering other nodal actions. In static problems 

the nodal actions are constant and consequently the geometric-stiffness property is time invariant. 

However, during dynamic loading the nodal actions especially horizontal actions vary significantly 

with time; so, the geometric-stiffness should be updated with time for numerical solutions. 

 

The finite-element method can be used to obtain a higher order approximation of geometric stiffness. 

There are two well-documented and robust approaches to consider all geometric nonlinear effects with 

high accuracy for 3D beam elements. The first one is the Corotational approach (Crisfield, 1991, 

Crisfield, 1997) that refers to the idea that the local element frame continuously rotates with the 

element and the tangent stiffness matrix remains intact during the analysis procedure. This approach is 

applicable to large deformation but small-strain problems. The second one is the total or updated 

Lagrangian formulation derived from the principles of continuum mechanics (Bathe and Bolourchi, 

1979) and involves approximate interpolation functions and numerical integration. This approach can 

be used efficiently for large displacement and large rotation analysis. However, it requires multiple 

elements per member to achieve accuracy. These two methods have been implemented in several 

commercial software packages like SAP2000 (CSI, 2011) that use updated Lagrangian formulation as 

well as research oriented and open source programs like Opensees (McKenna et al., 2010) that use the 

Corotational approach with some modifications (De Souza, 2000). A large number of publications are 

available in the literature which present modified or special purpose methods and solution techniques 

based on the Corotational and Lagrangian formulations. 

 



Usually, the mathematical formulation for considering geometric nonlinearity is heavy and the 

physical meaning of the derived relationships may be lost in the complexity of the mathematical 

approaches. This paper presents a simple formulation to handle secondary effects efficiently in a 3D 

beam element for structural engineering purposes. By using the derived formulation the effect of 

secondary effects on the torsional response of single-story structures has been evaluated. Furthermore, 

to identify secondary torsional effects in multi-story structures, a 7-story RC and steel case study 

buildings have been analysed by a software (SeismoSoft, 2010) which uses the Corotational 

formulation to consider geometric nonlinearities. 

 

 

2. EXTENDED GEOMETRIC-STIFFNESS FOR 3D BEAM ELEMENTS 

 

The deformed shape of a uniform 2D beam subjected to nodal displacements can be expressed by a 

linear combination of cubic Hermitian polynomials. For a 3D beam element, the deformed shape can 

be expressed in terms of the projected deformed shapes on two perpendicular planes passing through 

the element longitudinal axis. The projected shapes can be approximated by cubic Hermitian shape 

functions to derive a solid form of geometric stiffness matrix. This is in agreement to what has been 

done in the past (Clough and Penzien, 1993) to obtain the consistent geometric stiffness matrix which 

allow considering the effect of axial load on the deformed shape, i.e. PΔ effects. When an element 

undergoes inelastic deformations, the deformed shape deviates from the cubic shape and gets closer to 

a linear shape. However, it can be shown that the results are not sensitive to the chosen shape function. 
 

 
 

Figure 2.1. Degrees of freedom (a) and nodal actions causing secondary effects (b). 

 

A 3D beam element with its local coordinate system, its degrees of freedom and its nodal actions is 

shown in Fig. 2.1. The main key in considering second order effects is to identify which nodal actions 

generate other displacements or rotations in addition to their primary effects. It is clear that moments 

acting about axes 2 and 3 cannot produce any second order effect. Only the actions which are capable 

of producing second order effects are shown in Fig. 2.1. The cubic interpolation functions can be 

expressed as: 

 

it x x x
LL

2 3

2

3 2
( ) 1     ( 2.1) 

ir

x
x x

L

2

( ) 1
 

  
 

 ( 2.2) 

jt x x x
LL

2 3

2

3 2
( )    ( 2.3) 

jr

x x
x

L L

2

( ) 1
 

  
 

 ( 2.4) 

 
ui2 

ui3 
ui1 

θi2 

θi3 
θi1 

θj2 uj2 

uj

3 

uj1 

θj3 θj1 

i 

j 

P2 

P3 

Ti 

P1 

i 

P2 

P3 

Tj 

P1 

j 

a) b) 



 

 
 

Figure 2.2. Beam deflections due to unit nodal displacement. 

 

where Ψit and Ψir are translational and rotational shape functions for node i, respectively. They are 

shown in Fig. 2.2 for the 1-2 local coordinate plane. The shown second order torsional moment 

diagram is one component of the resultant second order torsional diagram produced by the lateral 

nodal actions and the deviation of the deflected shape from the original configuration. The nonlinear 

second order torsion diagram causes a nonlinear distribution of angle of twist along the element length 

that can be calculated by the following relationships when uj2=1. 
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where θj1/i is the angle of twist at node j with respect to node i. In order to have zero torsional 

displacement at node j, a torsional moment equal to θj1/iGJ/L needs to be applied. Thus, the 

corresponding geometric-stiffness influence coefficient is P3/2. 

Furthermore, this second order torsion induced by P3 and uj2 can produce a negligible third order 

displacement in the j3-direction equal to: 
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It is evident that the third order effects induced by the component nodal actions and displacements 

cannot be superimposed because they are proportional to the squares of the displacement. 

In structural engineering practice, rotations and axial deformation of members are relatively small. 

Furthermore, nodal displacements are limited to certain values according to the desired performance 

level. In contrast to the Corotational and Lagrangian formulations, here it is assumed that axial 

deformations are negligible and rotations are small enough to be treated as a vector quantity.  

The geometric-stiffness influence coefficients can be calculated by satisfying equilibrium and 

compatibility equations in the deformed configuration corresponding to the application of a unit 

displacement at the desired degree of freedom. This can alternatively be achieved by using the 

principle of virtual displacements. Detailed information on the derivation of the geometric-stiffness 

property can be found in (Masoudi, 2012). The extended geometric-stiffness matrix, kG, may be 

expressed as:  

 

 

x 

ui2 = 1 

P3 
i 

j 
Tj = P3 ui2 

it(x) 

L 

P3 

uj2 = 1 

i 

j 

Ti = P3 uj2 

jt(x) 

θi3 = 1 

Pi 

ir(x) 
To 

j 

i 



i j i j i i j i j j

i i
i

i i

j j

j

j

j

i

u u u u

T TEI T EI EI T EIP P P P
u

L L GJ GJ GJ L GJ LL L

T TEI T EI EI T EIP P P P
u

L L GJ GJ GJ L GJ LL L

EIP P P L P L

GJ

2 2 3 3 1 3 3 2 2 1

1 1 1 1
2 2 2

1 1 1
2 2 2

1 1

3 3 3 3

3 3 3 3

1
3

1

31

6 66 6
0 0

5 5 10 10

6 66 6
0 0

5 5 10 10

32
0

10 10 15 30

     



    

  

 
j j

j j

j

i
i

i
j i

i

i i
i

j

j

T TT EI EI EI
T

L GJ L GJ GJ L

T TEI T EI EI EIP P P L P L
T

GJ L GJ L GJ GJ L

P P P L P L P P P L P L

T TT TEI EI EI EI P P P P
u

GJ GJ GJ L GJ L L LL L

u

1 1 1 1
3

3 3 3 3 2 2 2 2

3 3 3

3 3 3 3

2 2 2

1

2 1 1 1 1
3 2 2

3

3
0

2

3 32
0 0

10 10 30 15 2

0 0
2 2 12 12 2 2 12 12

6 6 6 6
0 0

5 5 10 10





 

   

 

  

j ji

ji
j

ji

i

i i

j i j

j

T TT TEI EI EI EI P P P P

GJ GJ GJ L GJ L L LL L

TTEI EI EI EI P P P L P L
T T

GJ L GJ L GJ GJ

TTEI EI EI EI P P P L P L
T T

GJ L GJ L GJ GJ

P P

2 2 2

2 2 2

2 2 2 2

2 1 1 1 1

2 2

2 1 1 1 1
2

1 1 1 1
2

3 3
1

6 6 6 6
0 0

5 5 10 10

3 3 2
0 0

2 2 10 10 15 30

3 3 2
0 0

2 2 10 10 30 15

2 2







    

   

   

 
P L P L P P P L P L3 3 2 2 2 20 0
12 12 2 2 12 12

   
 ( 2.8) 

 

To avoid confusion related to the sign convention, in contrast to the traditional way of expressing the 

total stiffness matrix, kt, the geometric-stiffness matrix is added to the stiffness matrix rather than 

subtracted. 

 

t G k k k  ( 2.9) 

 

For a double cantilever element this formulation is in very good agreement with both the Corotational 

and the Lagrangian approach up to 4% drift. 

 

3. RESPONSE OF SINGLE-STORY STRUCTURES 

 

The equation of motion of the symmetric single-story 3D structure shown in Fig. 3.1 can be expressed 

as: 

 

t mu k u F  ( 3.1) 

 

 
 

Figure 3.1. A symmetric single-story structure subjected to a bi-axial dynamic loading. 
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where F is the vector of external forces and in case of a bi-axial excitation is equal to: 
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The frame is represented by a system with one rotational and two horizontal degrees of freedom. The 

system is nominally symmetric and has no structural or accidental mass or stiffness eccentricity. In 

order to consider second-order effects caused by member forces, the stiffness matrix should be formed 

according to all nodal forces (system reactions) in the deformed configuration which is equal to:  
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By using the condensed form of the geometric-stiffness matrix given by Eqn. 2.8 and substituting the 

relevant lateral and torsional stiffness of the system instead of EI and GJ, the total stiffness matrix can 

be expressed in the following form: 
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where, k1, k2 and k3 are translational and rotational stiffness influence coefficients and 21 ,F F  and 3F  

are elements of F . Initially, the system features three uncoupled equations of motion and the stiffness 

matrix has no off-diagonal elements. However, as the lateral forces build up, off-diagonal terms make 

the system slightly coupled. The frequency equation of the system yields the modal properties of the 

frame. 

 

t
2 0 k m  ( 3.5) 

     
k

k
k

m mk F mkmk
k

2 2 2 2 21 2
1 3 322 3

3

0
4

       ( 3.6) 

 

It is evident that the torsional frequency of the system is not altered by coupling effects because k3/m is 

a root of the frequency equation. Thus, Eqn. 3.6 can be reduced to: 
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According to Eqn 3.7, the lateral natural frequencies of the system are time variant and depend on the 

magnitude of the torsional reaction. However, for nominally symmetric structures the order of 

magnitude of secondary torsion is expected to be smaller than other forces. Therefore, it can be 

assumed that the free vibration frequencies in both horizontal directions remains unchanged regardless 

the secondary effects. 

 

It can be shown that if the undamped system is subjected to a biaxial set of harmonic excitations 

with1 and 2

 

frequencies, then the approximate steady-state torsional response is equal to (Masoudi, 

2012): 
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where ω1, ω2 and ω3 are lateral frequencies and the torsional frequency of the system, respectively and 

r is the mass radius of gyration. B1 and B2 are the amplitudes of the uncoupled harmonic response in 

the lateral directions. It is clear that higher order harmonics, 1 + 2 and 1  2, appear in the 

torsional response due to second order effects. Fig 3.2 shows the displacement response of the four 

edges of a geometric-nonlinear symmetric system normalized to the displacement response of the 

same system without geometric nonlinearity. The lateral periods of the system are 1T = 2s and 2T = 1s 

and subjected to harmonic loads with periods of 1T = 1s and 2T = 4s, respectively, while the torsional 

period of the system is T = 3s. The system has 5% damping with no predefined static eccentricity 

between the centre of mass (CM) and the centre of rigidity (CR). Interestingly, the system shows about 

32% maximum amplification of the displacement solely due to second order effects. It is worth noting 

that this is a special case of very long period loading and torsionally very flexible system. 

 

 
 

Figure 3.2. Normalized displacements of the four edges of a single-story system subjected to a bi-axial harmonic 

loading. 

 

The aforementioned system shown in Fig. 3.1 has been subjected to an ensemble of 9 bi-axial 

earthquake ground motions on different soil conditions. In each earthquake both records are scaled by 

a same factor to limit the displacement response to 4% drift in the direction of the dominant 

component. The response of the system has been calculated for a wide range of T2/T1 ratios, i.e. the 

ratio between the lateral periods of the system, and T1. 

 

As a measure for the resulting torsion, the traditional definition of equivalent static accidental 

eccentricity (Newmark and Rosenblueth, 1971), ed , in Eqn. 4.1 implicitly assumes that the peak 

values of base shear and base torsion occur simultaneously. This definition may cause a misconception 

that systems with identical lateral and torsional vibration periods show the largest torsional 

amplification (De la Llera and Chopra, 1994). 
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Figure 3.3. Average eccentricity spectra for single-story structures subjected to 45 rotated bi-axial records. 

 

Average spectra for the minimum of ed1 and ed2 are plotted in Fig. 3.3. The eccentricities are 

normalized to the plan dimension of the building. 

 

It is evident that when the ratio T2/T1 approaches unity the torsional response approaches zero. This 

can be proved mathematically that for symmetric single-story structures having a geometric-stiffness 

matrix like Eqn. 3.4 the torsional response is minimized when the lateral periods of the system are 

equal. For exactly the same dynamic loading in both lateral directions the torsional response is zero. In 

the case of a bi-axial static loading the angle of twist is always zero if the lateral stiffness in both 

directions is equal. However, in multi-story buildings the torsional response in the case of  T2 = T1 is 

not necessarily zero (Masoudi, 2012). Furthermore, the shown spectra are not sensitive to the direction 

of earthquake attack (Masoudi, 2012). 

 

It should be noted that the most realistic measure to compare torsional amplification in two models is 

the ratio between the displacements of the edges of the models. Based on this approach, second order 

effects generally cause a deamplification of the edge displacement in linear elastic structures because 

they soften the structure similar to the PΔ effect and consequently they reduce the seismic demand. 

Nevertheless, there are special cases where second order torsion may significantly amplify the 

displacements of the edges like it has been shown in Fig 3.2.  

 

However, in structures with both material and geometric nonlinearity the situation is different and 

second order torsion can amplify the edges demands when the system enters the inelastic range of 

response due to the material nonlinearity. This will be shown in the next section. 

 

4. RESPONSE OF MULTY-STORY STRUCTURES: A CASE STUDY 

 

A seven-story reinforced concrete (RC) building with a regular configuration has been considered as 

the case study. It is a simple symmetric 3D moment resisting frame. This structure is 22 meter high 

and features one 6 meter bay in both horizontal directions. This RC frame has been designed 

according to FEMA 450 (Building Seismic Safety Council (BSSC), 2004) and has been subjected to 

an ensemble of 8 earthquake ground motions. Fig. 4.1 shows the plan and elevation view of the case 

study building. In the case study, also a second building is considered. The second building is a 3D 

steel moment resisting structure which has exactly the same geometric configuration as the RC 

example. 
 

Three computer models have been assembled for each building using SeismoStruct (SeismoSoft, 

2010). The first one is a linear elastic model with a centric mass in all floors. The second one is a 
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linear elastic model with an eccentric mass in all floors which is an assumption commonly used for the 

analysis of such frames. A mass eccentricity equal to 5% of the plan dimension, i.e. 0.05×6 = 0.30m, 

is considered in both horizontal directions. De la Llera and Chopra (1994) states that the increase in 

building response resulting from accidental eccentricity varying among different stories is slightly 

(generally less than 10%) larger than the increase in building response computed using the same 

accidental eccentricity in all stories. Furthermore, it is common in practice to shift the centre of mass 

of all floors the same amount ea in the same direction (De la Llera and Chopra, 1995). The third 

computer model is a geometric-nonlinear model with a centric mass in all floors. This model is 

assembled using elastic elements with uncoupled lumped plastic hinges at both ends. The uncoupled 

lumped plastic hinges do not consider the interaction between axial load and moment capacity to avoid 

any nonlinearity induced by strength-dependent stiffness. 

 

 
 

Figure 4.1. Plan and elevation of the case study building frame. 

 

All models have been subjected to a set of eight bi-axial earthquake ground motions. In order to avoid 

any scaling procedure and use original records, the dominant components of all selected ground 

motions have spectral accelerations at short periods as well as at a period of one second that are very 

close to the considered design spectrum. The aim of the time history analyses is to evaluate effects of 

second order torsion on the seismic demand of this building frame compared with the outcome of the 

so-called “5% accidental eccentricity”. 

 

 
 

Figure 4.2. Equivalent static accidental eccentricity caused by second order effects in the 7-story RC building. 

 

Fig. 4.2 shows the equivalent static accidental eccentricity ed caused by second order effects in the 7-

story RC building. The eccentricity ed is calculated based on the maximum base shear in both 

horizontal directions. Thus, it gives a smaller ed for the direction perpendicular to the dominant 

horizontal component. It is evident that in contrast to elastic single-story structures that show no 

second order torsion in case of equal lateral periods, in multi-story buildings the second order torsion 
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is significant even for identical modal properties in both lateral directions. This is a consequence of the 

interaction between material and geometric nonlinearities. Once the system enters the material 

inelastic range, then small second-order torsion can cause an unbalance between the vibratory 

properties of the lateral directions. 

 

A more reasonable measure of the second order torsion is perhaps the maximum base column shear in 

the aforementioned three models. In Fig. 4.3 and Fig. 4.4 the maximum of the base column shear in 

the linear mass-eccentric as well as in the geometric-nonlinear model is normalized to the 

corresponding value in the mass-centric linear model. The results show that for both the RC and the 

steel building the second order torsion is capable of amplifying the shear demands up to 24 and 14%, 

respectively. The RC building is stiffer than the steel building, therefore it has to bear larger lateral 

loads and consequently the secondary torsion is more severe in the RC building. Furthermore, in some 

earthquakes the RC structure responds mainly elastically thus second order effects soften the structure 

and consequently cause deamplification of the base column shear. 

 

  
 

Figure 4.3. Maximums of the uneven normalized base column shear in the linear mass-eccentric and geometric 

nonlinear models of the 7-story RC building. 

 

  
 

Figure 4.4. Maximums of the uneven normalized base column shear in the linear mass-eccentric and geometric 

nonlinear models of the 7-story steel building 

 

 

5. CONCLUSIONS 

 

A simple finite-element formulation based on the extension of the geometric-stiffness property has 

been developed. This formulation provides a physical understanding of second order effects at 

presence of all nodal actions. By means of the proposed formulation it is much easier and more 

straightforward to study the response of simple systems subjected to classical excitations like e.g. 

harmonic loading. This help understanding how the vibratory properties of a system may be affected 

by second order effects. 

 

In single-story structures, based on the traditional definition of equivalent static accidental 
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eccentricity, second order effects may cause a torsional amplification about the order of magnitude of 

the code-specified eccentricity. However, in torsionally flexible structures the edge demands may be 

amplified even more significantly. 

 

In multi-story structures second order torsion plays an important role because it can generate a larger 

amplification compared to linear mass-eccentric models which are commonly recommended by code 

provisions to account for accidental eccentricity. This could necessitate a re-evaluation of codified 

accidental eccentricity to account for this unforeseen source of accidental torsion. 
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