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SUMMARY: 
This paper presents a new weighted entropy-based measure for assessing reliability of water distribution 
networks. The proposed methodology considers both of mechanical uncertainties (probability of pipe failure) 
and uncertainties due to hydraulic parameters (flow in pipe) simultaneously. In this methodology a penalty 
function is defined for different links of the network based on their probability of failure in the specified hazard 
scenario. This penalty function is inserted in the hydraulic entropy function of the network in an appropriate 
manner so that the effect of mechanical behaviour of links is taken to account in the network’s entropy. In this 
manner the amount of supply loss due to absence of each link in the network is incorporated in the corresponding 
penalty function. Using some sample networks, it is shown that on the basis of the proposed entropy-based index 
the optimum hydraulic layout for designing a new system, or for finding the best mitigation plan against 
different natural hazards like earthquake can be chosen. 
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1. INTRODUCTION 
 
A water distribution system is a network of source nodes, pipes, demand nodes and other hydraulic 
components such as pumps, valves and tanks. The objectives of the water distribution system are to 
supply water at a sufficient pressure level and quantity to all its users and provide water for the 
purpose of fighting fires. Quantification of water distribution networks’ reliability, as a lifeline system 
whose failure causes serious consequences in the social and economical environment, has been 
considered as a one of the most important research topics in the risk management in the past decades. 
Reliability of a water distribution network can be defined as the probability that the given demand 
nodes in the system receive sufficient supply with satisfactory pressure head. There are numerous 
measures of reliability for water distribution networks proposed by various researchers. But one of the 
reasons that reliability has not yet become a common phase in design practice is its complexity 
(Moghtaderi-Zadeh & Kiureghian, (1983); Cullinane, (1985); Wagner et al., (1988); Quimpo & 
Shamsi, (1991); Li et al., (1993); Wu et al., (1993); Kansal et al., (1995);   Selçuk & Yücemen, (1999); 
Tanyimboh et al., (1999); Ostfeld, (2001)). 
 
Redundancy, on the other hand, in a water distribution network implies the reserve capacity of 
network and also the demand nodes have alternative supply paths in the event that links go out of 
service (Awumah et al., (1990, 1991)). Redundancy, which is related to reliability, is an aspect of the 
overall system performance that is often neglected. A truly redundant network is inherently very 
reliable. Seismic performance of lifeline networks during the past earthquakes have turned out that a 
single redundancy provides a tremendous increase in reliability. In other words, networks with some 
amount of redundancy have higher ability to respond to partial failure in the network (Javanbarg, 
2006). Thus, Redundancy can be considered as a surrogate measure for the reliability of water 
distribution networks. Awumah and his colleagues were the earliest researchers in this field but later 
Tanyimboh and Templeman (1993a, 1993b) established a better definition of the entropy function for 



water distribution networks. The thorough definition of the entropy function is presented in the next 
section, together with a discussion on its interpretation. 
 
Tanyimboh and Templeman also developed a non-iterative algorithm to find the maximum-entropy 
flow distribution for single-source networks. The only known data are assumed to be the network 
topology, the flow directions in every pipe, and the supplies and demands at every node. As the 
parameters such as pipe length, diameter and roughness are not known, there will be an almost infinite 
number of possible flow distributions, unless the network is of the branching-tree type. This non-
iterative algorithm is formulated using the path entropy concept and Laplace’s principle of insufficient 
reason. They also tried to extend the single-source algorithm to cover multiple-source networks, 
through the use of the super-source concept. But this extended version of the single-source algorithm 
for multiple-source networks was shown to be inconsistent in a discussion paper by Walters. Based on 
the single-source algorithm, Yassin-Kassab et al. (1999) presented a non-iterative algorithm for 
calculating the maximum-entropy flow distribution in multiple source networks. 
 
Tanyimboh and Templeman (2000) investigated the relationship between the entropy and reliability of 
water distribution network. This seems to support the hypothesis that water distribution networks that 
are designed to carry the maximum entropy flows will be highly reliable. Further studies by 
Tanyimboh and Sheahan (2002) explored the possibility of optimizing the layout of water distribution 
systems by using a minimum-cost/maximum-entropy design concept. The research on entropy flows 
in water distribution network is advancing to the stage where applications are possible, but the actual 
interpretation of the meaning of network entropy has never been fully elucidated. 
 
Ang and Jowitt (2003, 2005a) investigated the meaning of network entropy with the use of a simple 
water distribution network. The investigation concentrated on the relationship between the total power 
dissipated by the water distribution network and the numerical value of the network entropy. In 
another article by them (Ang and Jowitt (2005b)), an alternative method to calculate the network 
entropy of water distribution systems was presented, which gives new insights into the meaning of 
network entropy. This alternative method, termed the Path Entropy Method (PEM), offers a simpler 
explanation to the entropy of branching-tree networks and the maximum entropy of water distribution 
networks. The formulation of the PEM was based on the fact that the entropy of the water distribution 
network arises because of the different paths available to a water molecule to move from a super-
source to a super-sink. In the next section, a brief explanation of the PEM is presented. 
 
On the other hand, for water distribution systems connection to a source is not only necessary, but a 
sufficient condition to ensure that a given node is functional. That is why hydraulic calculation has to 
be included in determining mechanical-hydraulic reliability. Previously defined redundancy indices 
for water distribution networks in the literature are generally based on only hydraulic or mechanical 
characteristics of the network and they do not simultaneously consider both characteristics in their 
calculations. This is while the network’s risk is highly affected by both of these characteristics. 
 
In this regards, the aim of this paper is to explore deficiencies of previous definitions for the entropy 
of water distribution networks and presenting a new weighted entropy-based measure for assessing 
reliability of water distribution networks considering both of aforementioned characteristics of a 
system.  
 
 
2. ENTROPY FUNCTION FOR WATER DISTRIBUTION NETWORKS 
 
One of the most appropriate entropy functions for water distribution networks defineed by Tanyimboh 
and Templeman (1993). The formulation of the entropy function mainly relied on Shannon’s measure 
of uncertainty, which is the underlying principle of information theory. They assumed that the 
available information on the water distribution network were the topological layout, the supply and 
demand at all nodes, and the flow direction in each pipe member. The data on flow direction in each 
pipe is critical, as there will be a maximum-entropy flow distribution for every set of flow directions. 



The missing data are the length, diameter, and roughness of all pipes. Unless the network has a 
branching structure, there will be a very large number of feasible flow patterns. They define network 
entropy function as: 
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where S is the entropy defined by Shannon and N is the total number of nodes and K is the Boltzman 
constant which is usually set to unity and it will be shown in this paper that this can be true only in 
special cases. 
 
The entropy of the external inflows, S0 is represented by: 
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where q0i is the external inflow at source node i and T0 is the total supply or demand. The second term 
in the entropy function consists of the outflow entropy at each node Sn weighted by the ratio Pn of the 
total inflow of each node to the total inflow of the whole network. An important point in the definition 
of outflow is that it is inclusive of any demand at the node. 
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where Tn is the total outflow at node n. 
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where NDn is the set of all outflows from node n, and 
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where qnj is the flow from node n to node j. 
 
Entropy function, given by Eqn. 2.1 shows that the entropy of a water distribution network has two 
components. The first part is the amount of entropy in the external inflows and the second part consists 
of the weighted entropy values at every demand node. Informational entropy measures the amount of 
uncertainty in a situation or system. For a water distribution network, the uncertainty can be imagined 
from the viewpoint of a water molecule. Using the simple example water distribution network, shown 
in Fig. 2.1, the concept of entropy function is investigated. The water distribution network, shown in 
Fig. 2.1, has a single source node and three demand nodes and the maximum entropy flows are 
assigned to the pipes. The entropy of the external inflows S0 is the uncertainty faced by a water 
molecule moving from the super-source to the individual supply nodes. For all nodes, the entropy 
would be non-zero only if there are two or more paths for the water molecule to take at each node. 
However, the entropy Sn calculated for each node n would have to take account of the probability for 
the water molecule arriving at that node, which is expressed by the Pn term in Eqn. 2.1. Details of 
entropy calculation of the sample network with its tree diagram are shown in Fig. 2.2. 



 
 

Figure 2.1. Sample fully–connected network with maximum network entropy based on Eqn. 2.1. 
 

 
 

Figure 2.2. Tree diagram of sample network, shown in Fig. 2.1, with entropy calculation 
 
From the above-mentioned definition, it is clear that the entropy of a water distribution network can be 
represented by the number of paths available to a water molecule moving from the super-source to the 
super-sink (Fig. 2.2). Based on this observation, an alternative way of calculating network entropy is 
the path entropy method (PEM) (Ang and Jowitt, 2005). The PEM diagram shows the number of paths 
from the super-source to the super-sink and the amount of flow in each path. Development of the PEM 
diagram includes two main steps. The first step is to establish the number of paths from the source 
nodes to every demand node and draw the PEM diagram with all the nodes and links. The second step 
involves determining the flow carried by each link, which is performed by an inspection of the flow 
rates in all of the network links. Once the PEM diagram is developed, the calculation of the network 
entropy is relatively straightforward, as compared to the network entropy equations by Tanyimboh and 
Templeman (1993). However, it must be noted that the less complicated entropy calculation is a result 
of the efforts spent in organizing the data into a PEM diagram. The true strength of the PEM lies in its 
ability to give new insights into the meaning of the network entropy, such as the entropy of branching-
tree networks and the maximum-entropy flows of a single-source network with given flow directions, 
which will be discussed in the next section. PEM diagram of the sample network and its entropy 
calculation are shown in Fig. 2.3. 
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Figure 2.3. PEM diagram of sample network with entropy calculation 
 
 
3. DISCUSSION ON THE PREVIOUS DEFENITION OF ENTROPY FUNCTION  
 
In a discussion paper by Walters (1995), it was stated that any tree that connects the demand nodes 
will have the same minimum entropy value, or, in other words, all branching-tree networks will have 
the same minimum entropy value. Afterward Ang and Jowitt showed this fact using path entropy 
method. For branching-tree networks with a single source, there is only one path from the source node 
to every demand node. From an informational point of view, all the different layouts of branching-tree 
networks, related to the sample network shown in Fig. 2.1, which are shown in Fig. 3.1., have 
essentially the same entropy. Thus, for a branching-tree network, the entropy is an invariant measure. 
 
The PEM diagram for the branching-tree sample network is shown in Fig. 3.2, which can be used for 
representing any of the different layouts. A water molecule moving from the super-source to the super-
sink is only uncertain about the demand node it would arrive. The question of different paths to the 
same demand node does not exist in a branching-tree network. Thus, Tanyimboh and Templeman’s 
definition of entropy function cannot investigate any differences between branching-tree networks 
with the same number of source and demand nodes, like networks shown in Fig. 3.1 which all of them 
have same PEM diagram as shown in Fig. 3.2. But with a cursory look at these networks, it can be 
easily seen that some of these networks are more sensitive than the others to the damage of its links. 
For instance, if the link 1-3 in the networks (c), (d) and (e) in Fig. 3.1 gets damaged due to any hazards 
like earthquake, the amount of loss will be 30, 10 and 5, respectively. The amount of loss entirely 
depends on the layout of the network in which demand nodes are connected to source node in their 
series or parallel configuration. In other words, redundancy of the network affects the amount of loss 
and therefore on the reliability of network, but the definition of entropy function by Tanyimboh and 
Templeman cannot detect properly the effect of redundancy. 
 
To overcome this problem, Emamjomeh and Hosseini (2010) defined a penalty number (Tp) for each 
link, which is equal to the amount of loss if that link fails, and based on these penalty numbers, they 
introduced a new weighting ratio ( '

nP ) as 
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where Tp0 is the summation of penalty numbers for all links in the network. They used this weighting 
ratio instead of previous one in their calculations and the rest was as before. They mentioned that these 
penalties could be modified by other factors like the importance of demand nodes. They also showed 
that the suggested weighting factor behaves like a modified Boltzman's constant.  
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Figure 3.1. Different tree-branching networks of the sample network shown in Figure 1 

 

 
 

Figure 3.2. PEM diagram of the branching-tree networks 
 

1

2

3

4

30 

20

5

5

Super‐Sink 
Super‐Source 

0.8676
30

5
ln

30

5
2

30

20
ln

30

20
S 













  

1 2

3 4

30

55 

20
30

25 

20

1 2

3 4

30

5

25 20

5

5

30 

1 2 

3 4 

30 

5 5 

20 

30 

10 

5 

1 2

3 4

30

55 

20
30

5 

20 

1 2

3 4

30 

55

20

30

5
5

1 2 

3 4 

30 

5 5 

20 

20 5 
25 

1 2

3 4

30

55 

20

20 

10

5 

1 2

3 4

30 

5

20

25

5 5

5

1 2 

3 4 

30 

5 5 

20 

20 

5 5 



 

 

 

 

 

 

 

 
 

 
 

 

(a) (b) (c) (d) 

 
Figure 3.3. Different patterns of the sample tree-branching networks 

 
Although the modification method proposed by Emamjomeh and Hosseini (2010) can separate 
networks with different patterns and same entropy values from each other, but it cannot take in to 
account links-failure probabilities. For example, two different networks with different link-failure 
probabilities but same patterns (like pattern (b) in Fig. 3.3) have identical entropy values while they do 
not have same reliabilities.   
 
 
4. MODIFIED ENTROPY FUNCTION FOR WATER DISTRIBUTION NETWORKS 
 
As mentioned in the preceding section, Although Tanyimboh and Templeman’s entropy function for 
water distribution networks has its benefits and simplicity but it cannot identify different patterns as 
well as link-failure probability. This is while the network’s risk is highly affected by both hydraulic 
and mechanical characteristics of a system. Thus, a new weighted entropy function is presented here 
which can consider both aforementioned characteristics of the system in its formulation while keeping 
simplicity of pervious definition. For this purpose, a penalty function is defined for different links of 
the network based on their probability of failure in the specified hazard scenario. This penalty function 
is imposed in the hydraulic entropy function of the network in an appropriate manner so that the effect 
of mechanical behaviour of links is considered in the network’s entropy. In this manner the amount of 
supply loss due to absence of each link in the network is taken in to account by corresponding penalty 
function. 
 
The modified entropy function for water distribution network is defined as: 
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where SN is the new entropy value and the other parameters are defined as in Eqn. 2.1 except Sn which 
is calculated by the following equation 
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where Pnj is obtained from Eqn. 2.6. Pfnj is the failure probability of the link between node n and node j 
which can be obtained using analytical hazard analysis of a specified scenario or using expert 
judgement.  
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Figure 4.1. Venn’s diagram for ensemble space of a system with (a) 2 components, (b) 3 components 
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Figure 4.2. New Entropy function diagram for a system with 2 components for different failure probabilities 

 
It should be noted that a biased number (-ln 0.01) is added to the proposed entropy function to prevent 
negative entropy values by assuming failure probability of definitely damaged link equal to 0.99. 
Because entropy function is a comparative index, this biased number does not affect its concept.  
Moreover, in the proposed entropy function like the earlier one, it is assumed when a link is in failure 
state, it is completely nonoperational and no water molecule can reach the demand node from that link. 
In the other words, leakage state is not considered here. 
 
In order to investigate the behaviour of proposed entropy function, a simple network is considered 
with one source and one demand node and two parallel links in which failure probability of links are 
Pf1 and Pf2. In this network a water molecule has only two choices, P1 is probability of selecting the 
first link and P2 is probability of selecting the second one. So, Venn’s diagram of this network will be 
as Fig. 4.1a and its entropy function for some different failure probabilities of links will be as Fig. 4.2. 
As it is seen in Fig. 4.2a, this new function is completely behaving like Tanyimboh and Templeman’s 
function when failure probability of links are 0.99, but entropy value increases by decreasing failure 
probability of links. Thus, in identical failure probabilities of links, maximum entropy will occur when 
all links have the same chance of being selected by water molecules. Mathematically, If operational 
probability of links is defined as 
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maximum entropy of network with two parallel components and one demand node will be obtained 
when the amount of flow in the first pipe is 
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Figure 4.3. New Entropy function diagram for a system with 3 components 
 
Eqn. 4.4 implies when failure probability of two links are the same, maximum entropy will be 
obtained when both of links carry the same amount of flow however less failure probability gives 
greater entropy value (Fig. 4.2a) and when two different links do not have the same failure probability, 
maximum entropy will occur when the link with greater failure probability carries lesser amount of the 
flow (Fig. 4.2b) so that a definitely vulnerable link must have no chance in being selected by 
molecules. Fig. 4.3 shows same results for a one source-one demand network with three parallel 
components. 
 
With this new definition of entropy for water distribution networks, it can easily be seen that entropy 
value for all the tree branching networks shown in Fig. 3.1 are the same only when failure probability 
of all links is zero. But when failure probability of links is not zero, the network with series links has 
lesser entropy than parallel ones. In the other hand, failure probability of less important links in the 
network does not highly affect the entire network’s entropy value. Therefore, the proposed entropy 
function can be helpful in selecting the most important links in different hazard scenarios and selecting 
the optimum mitigation plan. 
 
 
5. CONCLUSIONS  
 
Based on the discussions and numerical examples presented in the paper, the proposed weighted 
entropy-based index for calculating reliability of water distribution networks makes it possible to 
determine the different reliability parameters for systems with different complexity. Mechanical and 
hydraulic characteristics of water distribution networks can also easily be taken in to account for 



determining reliability of the system. The proposed definition has simplicity of previously defined 
entropy functions without their deficiencies. This index can easily make distinction between different 
networks with different mechanical probabilities of failure. So, it can be used to obtain the optimum 
hydraulic layout for designing a new system, or to find the best mitigation plan against different 
natural hazards like earthquake. 
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