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SUMMARY:  
Slack cable structures exhibit large displacements and rotations in response to the applied loads before reaching 
an equilibrium state. Consequently, following any alteration of the applied loads, the structure is essentially 
unstable and ordinary numerical analysis methods break down due to singularities. In this paper, an effective 
iterative method is developed for three-dimensional large-displacement analysis of structures consisting of slack 
cables as the primary load bearing system. This approach takes advantage of substructuring technique that helps 
reduce the analysis costs associated with slack cables and uses an effective procedure for detecting and limiting 
the structural instabilities. The proposed analysis method is applied to a number of example structures using a 
computer program that also serves to generate the initial form of the structure. It is shown that this procedure is 
an effective approach in the analysis of such structures with high degrees of instability and large displacements. 
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1. INTRODUCTION 
 
Tensile cable structures have received closed attention for several decades as a means of construction 
with minimum use of material. The recent developments of new and improved construction materials 
further support the use of such structures to cover relatively large spans. On the other hand, the 
analysis and construction of cable-stayed structures is more challenging than most ordinary structures. 
Numerical analysis is more problematic particularly when the cables are not pretensioned. In response 
to the applied loads, large displacements and rotations occur in these structures to reach an equilibrium 
state that balance the applied loads. That is, following any alteration of the applied loads, the structure 
is essentially unstable and ordinary numerical analysis methods (e.g. stiffness approach – commonly 
with tension-only link elements to model the cables) usually break down due to numerical 
singularities. As a result, the structural form is highly dependent on the applied loads, and unlike other 
common types of structures, the structural geometry is not known before the analysis. These structures 
often have irregular shapes and low self-weights which makes them more sensitive to the applied 
loads. Hence, the first step in the analysis of such structures is finding the initial equilibrium 
configuration, which in turn affects the load-bearing capacity of the structure. Only after determination 
of the initial configuration, stiffness matrices of the structural members can be used to describe the 
structural stiffness to resist the applied loads.  
 
A thorough study of the historical aspects of cable-stayed structures and a literature review of the topic 
can be found in (Tibert 1999). Cable-suspended roofs (Krishna 1978) considered herein can be divided 
into the categories of (i) simply suspended cables, (ii) pretensioned cable trusses, and (iii) pretensioned 
cable nets (Buchholdt 1985). This study focuses on the analysis of simply suspended cables, where 
pretension is negligible and the cables show significant amounts of sag. Furthermore, the cladding is 
assumed not to significantly increase the stiffness of the system. These roof systems have a single or 
double curvature and show little or no stiffness. Most of the literature on this topic are mostly limited 
to two-dimensional cable loading and deformations (Irvine 1992; Wang et al. 2011). On the other 



hand, the works on three-dimensional analysis of slack cable structures involve complex formulations 
or simultaneous solutions of several nonlinear equations (Gosling and Korban 2001; Impollonia et al. 
2010), and thus may be restricted to the analysis of relatively small structures. 
 
In this study, an effective and simple iterative method is developed for three-dimensional large-
displacement analysis of slack cable-bar structures. The effectiveness of this approach stems from (i) 
the reduction of the memory and processing costs by treatment of each slack cable element as a 
substructure, whose point coordinates and end reactions are updated in each iteration, and (ii) the 
detection of the structural instabilities (that may arise before reaching the equilibrium state) in the 
stiffness matrix by recognizing degrees of freedom (DF’s) with near zero stiffness, and allowing only 
limited displacement increments in these DF’s. The slack cable substructures are treated as centenary 
members subjected to concentrated loads along their length, and are allowed to deform in three 
dimensions. The form of each slack cable and its internal forces are found in another iterative 
procedure within the overall iterations by satisfying the compatibility and equilibrium requirements for 
that cable. After sufficient number of iterations, this procedure naturally leads to a reconfiguration of 
the structural elements in a way that the member internal forces will be in equilibrium with the applied 
loads. 
 
The proposed analysis method is applied to a number of example structures using a computer program 
written in MATLAB (The MathWorks® Inc 1994-2011) environment. The example structures consist 
of pin-ended bar elements and both taut and slack cables. A computer procedure is also developed for 
the initial form-finding of these structures when only subjected to dead gravity loads. Finally, this 
method is successfully utilized to analyze a large structure of this type – a design alternative for birds’ 
park of Tehran, Iran – with a plan area of more than 50000 square meters. It is shown that this 
procedure is an effective approach for the analysis of such structures with high degrees of instability 
and large displacements. Due to its modest memory and processing costs, this approach also paves the 
way for dynamic analysis of slack cable-bar structures subjected to time varying lateral loads such as 
earthquake and wind. 
 
 
2. ANALYSIS OF SLACK CABLES 
 
A cable analysis method is introduced that helps determine the cable shape, internal forces and 
deformations, and end reactions. The three-dimensional cable form highly depends on the applied 
loads and is unknown in the beginning of the analysis. To start the iterative procedure to determine 
this form, an initial two-dimensional parabolic shape is assumed for the cable. Cables take this shape 
when are subjected to uniform gravitational loads along the horizontal (Beer et al. 2003). This shape is 
given by: 
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where x  and z  are horizontal and vertical cable coordinates measured from the cable lowest point as 
shown in Figure 2.1, 0T  is the cable tension at this point, w  is the uniformly distributed load, and c  is 

the coefficient of the parabola. The cable length measured from the lowest point to an arbitrary point 
p  on the cable can then be obtained from: 
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If p  is selected to be the cable support at one end, the above equation yields the cable length at one 

side of its lowest point, and can be used to determine the total cable length. Special considerations 
need to be taken into account for the cases when the lowest point of the parabola governing the cable 



shape falls outside of the cable span. Knowing the cable length (or the desired cable sag) and the 
coordinates of its end supports, the initial parabolic shape of the cable can be determined using Eqns. 
(2.1) and (2.2) independent of the amount of uniform load or the cable tension. This constitutes the 
initial coordinates of the points along the cable and helps determine the initial value of its end 
reactions. As shown in Figure 2.1a, the initial point coordinates in the local transverse y -direction are 
all zero, that conform with zero lateral reactions at ends. It is seen that the cable local axes are defined 
such that the x- and z-axes lie in a vertical plane including support points, and are horizontal and 
vertical, respectively.  
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Figure 2.1. (a) Global and local coordinates, (b) Cable substructure in its initial form 

 
2.1 Substructuring 
 
Next, the cable is divided into short straight segments with concentrated loads at joints. These 
segments can be uniformly spaced, or they can be selected based on the locations of the concentrated 
loads applied to the cable, if any. Distributed loads can also be replaced with equivalent concentrated 
loads at these points. In order to avoid the numerical instabilities resulting from small flexural stiffness 
of the cable and reduce the computational costs, each cable is treated as a substructure that its internal 
points do not add to the overall DF’s of the system. The initial form of the cable substructure is shown 
in Figure 2.1b.  
 
After determination of the initial point coordinates of the cable in its local coordinates and the applied 
loads at these points, the cable shape is updated iteratively until the associated compatibility and 
equilibrium equations are satisfied. Details of this procedure are presented in the next section. The 
cable internal forces and end reactions can then be determined, which in turn are applied to the 
supporting structure in the overall analysis procedure.  
 
2.2 Cable Form and Internal Forces 
 
Unless the cable is only subjected to a gravitational uniformly distributed load along the horizontal x -
axis, the initial cable form does not satisfy the equilibrium requirements. An iterative procedure is 
proposed herein that attempts to update the cable form, internal forces and end reactions to satisfy the 
equilibrium and compatibility requirements. This iterative procedure is described below: 
 

1- Starting from end 0 (support A) shown in Figure 2.1, the initial value of the sum of the forces 
applied to the cable ∑F consists only of the load applied from the support at point 0, namely 
( , , )Ax Ay AzR R R . These reactions are calculated in the previous iteration, or with the initial 

assumption of parabolic shape.  These forces must be in equilibrium with the internal force in 
the first segment of the cable, denoted 01. Hence, knowing the deformed length of segment 01 
based on its internal axial force, the new location of point 1 1 1 1( , , )x y z  is determined such that 

segment 01 lies along the direction of the resultant force ∑F= ( , , )Ax Ay AzR R R  (Figure 2.2a). 

2- Moving to the next segment 12, ∑F is increased by the force components applied at point 1, 
and hence must be in equilibrium with the internal force of this segment. Then, knowing the 
deformed length of segment 12 and the new orientation of the resultant force ∑F, the new 
location of point 2 is determined. Similarly for the next segment, ∑F is increased by the force 



components applied at point 2. This procedure is repeated until the locations of all subsequent 
points of the cable are updated. Note that using this procedure, the new location of point N 
will not necessarily coincide with the location of the support at far end, and needs to be 
adjusted as described in Step 4. As an alternative approach, one can leave the position of the 
last point unaltered at the expense of the calculated length of the cable being different than its 
actual length, and then use this difference in Step 4 for modification of reactions. 
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Figure 2.2. Updating the locations of (a) point 1 and (b) point 2 of the cable 

 
3- By using the force equilibrium equations on a section of the cable, or taking the moments 

about three orthogonal axes passing through the far end, the new amounts of reaction forces at 
end 0 are recalculated. 

4- Using the updated point positions, the deviation of cable end (point N) from the far support is 
determined using: 

 
( , , ) ( , , ) ( , , )N N N B B Bx y z x y z x y z       (2.3) 

 
Then, the reactions ( , , )Ax Ay AzR R R  applied to the cable at end 0 are modified according to the 

following rules: 
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where the adjustments are given by: 
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In the above equation,   is a learning gain, whose value can conservatively selected to be 0.1 

to avoid divergence of reactions. Furthermore, it is recommended that the magnitudes of the 
adjustments should not exceed 0.05 AxR . In most cases, one may choose more relaxed limits 

for the above corrections to speed up the convergence, but this may occasionally destabilize 
the learning procedure, particularly when the load pattern or support locations are significantly 
different than what was used to determine the last converged cable shape. The logic behind the 
development of Eqns. (2.5) is explained later in this section. 

5- The iterations are stopped and the reaction at far end is calculated using force equilibrium if 
the convergence is achieved; otherwise, the next iteration begins with recalculation of point 
locations as explained in Step 1. The norms that are examined for convergence include the 
error in the prediction of point N, moment equilibrium error, and normalized iterative changes 
in point coordinates. 
 

To understand how the above procedure updates the cable shape and internal forces towards achieving 
equilibrium and compatibility, the update rules for point positions and reactions should be studied. In 
the first two steps, the cable point coordinates are updated such that the internal force in each cable 
segment is in equilibrium with the applied forces. In the next step, the reactions at cable end 0 are 



recalculated using the force equilibrium, or the moment equilibrium about cable end point N. 
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Figure 2.3. Correction of reaction forces to correct the position of point N (a) along x-direction, (b) along y- or z- 
directions 

 
In the fourth step, the reactions at end 0 are modified to move the end point N closer to the far end 
support B. For example, x  in the first equation of Eqns. (2.5) is indicative of error in the prediction 
of point N along the local x-axis. A positive value of x  shows that the cable is stretched too much, 
and it should simply be released to some extent to increase its slack, as shown in Figure 2.3a. For this 
reason, the first one of Eqns. (2.5) tends to reduce the x-axis reaction in this case, and increase it 
otherwise. The equations governing the corrections along y- and z-axes also modify the reactions 
based on errors y  and z , respectively. A positive error shows that the far end of the cable needs to 
move in the negative direction; that is, the cable should rotate clockwise as demonstrated in Figure 
2.3b. To apply a clockwise moment, the reaction at A should algebraically increase, and the reaction at 
B should in turn decrease. This can be achieved by making a positive correction in the reaction at A 
using Eqns. (2.5). The performance of the proposed procedure is shown through the analysis of a cable 
in Section 4 of this paper. 
 
2.3 Special Considerations 
 
The internal forces and reactions have a central role in the success of the analysis procedure described 
above. For this reason, it is recommended that end 0 of the cable is selected as the end with larger 
reaction forces. This can done by comparing, say, the x-component of reaction at ends, which is 
widely used in corrections given by Eqns. (2.5). 
 
Rarely, a special case arises when a cable segment has a near-zero amount of internal force. In this 
case, the coordinates of the next point cannot be accurately determined using the procedure described 
in steps 1 and 2. Consequently, the cable can in fact be separated into two or more self-equilibrating 
statically-determinate sections, separated with zero-force segments. The cable sections immediately 
connected to the supports can be used to determine the support reactions by summing up the forces 
applied to that section. The shape of each section can then be determined using the above-mentioned 
procedure starting from the supported ends. Using a similar procedure, the internal forces and shapes 
of cable sections between zero-force segments within a cable can also be determined. However, it 
should be noted that zero-force segments are not fully straight, and their lengths cannot exactly be 
determined using the coordinates of their end points. One can only check the distance between the 
segment ends, which should not exceed the length of the segment for compatibility. This is usually the 
case for these segments, as otherwise, their internal force would not be zero. Consequently, if a cable 
has more than one zero-force segment (extremely rare), the exact position of the intermediate sections 
relative to cable ends would not be clear, and the calculated overall cable length will be equal to or 
smaller than its actual length. On the other hand, this will not cause any issues in the overall structural 
analysis since only the end reactions are required for this purpose. 
 
3. OVERALL ANALYSIS PROCEDURE 



 
A large-displacement analysis procedure is presented herein that can handle the numerical instabilities 
resulting from small flexural stiffness of cables and unknown structural geometry. In response to the 
applied loads, this procedure allows for gradual changes in the structural form (and hence, the 
locations of cable end supports) and limits the amounts of displacements in DF’s with near zero 
stiffness, until the external loads are balanced. 
 
3.1 Analysis Start Point 
 
The initial form of the structure is usually obtained when the structure is subjected to its self weight. In 
order to start the analysis, the locations of end supports for primary cables (cables that are directly 
connected to supports or column tops) are temporarily fixed and a parabolic shape is assumed for all 
slack cables. Knowing the initial locations of cable supports, their shapes and internal forces are 
determined according to the procedure described in the preceding section. Then, if the primary cables 
support any other cables (called herein the secondary cables), their shape are used to update the 
support locations of those cables. Next, the secondary cables are analyzed with updated support 
locations, which in turn, alter their end reactions applied to the supporting primary cables. The forces 
applied to the primary cables are then updated accordingly, and the above procedure is repeated until 
the displacement increments become sufficiently small. At this point, the equilibrium is achieved in 
the slack cable system, but the cable supports have not yet moved to their actual positions. It may be 
possible to leave the achievement of this equilibrium state to the next step, where the structural 
geometry is allowed to change; however, several simulations have shown that this may result in a 
considerable increase in the number of iterations necessary to achieve equilibrium. 
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Figure 3.1. (a) Analysis of a two-dimensional slack cable system in the cases of cable supports fixed and 
released, (b) Equilibrium at point B 

 
3.2 Determination of the Equilibrium State 
 
After achieving equilibrium in the cable system, the column tops are released to allow them to move to 
their equilibrium locations. In these structures, the columns are usually pin-ended, as otherwise the 
horizontal cable reactions will lead to extremely large moments at their bases. A two-dimensional 
example of such movement is shown schematically in Figure 3.1. It is illustrated that since the cable to 
the left of the column is longer (and hence has a larger tension) the initially-vertical column tilts to the 
left, so the cable sags in the left and right cables are increased and reduced, respectively. This reduces 
the horizontal component of cable reaction in cable AB and increases that BC. This continues until the 
sum of cable end reactions and column compressive force cancel out as shown in Figure 3.1b. 
 
As mentioned earlier, pin ended columns supported by slack cables do not have any lateral stiffness, 
and the external forces are balanced only by a reconfiguration of the structure. For this reason, a 
stiffness matrix consisting of DF’s at column tops is essentially singular. To get around this issue, the 
following procedure is proposed. 
 

1- The displacement vector cu consisting of column top displacements is initialized to zero, or 
the values obtained from the last converged analysis, if any.  

2- The unbalanced load vector uf  is calculated as the sum of forces cf  applied to the column tops 



(from primary cables or directly-applied concentrated loads) and the column internal forces 
applied to their top nodes. 

3- A stiffness matrix K  is formed for the DF’s of column top nodes based on the current 
orientation of the columns and the current state of tensioned or straight cables. Here, the slack 
cables are assumed to provide no stiffness for the system. 

4- The eigenvalues i  and eigenvectors iφ  of the stiffness matrix are obtained to determine its 
singularities. In this step, care must be taken about the effect of truncation errors on the 
symmetry of the stiffness matrix, to avoid imaginary values in the results. 

5- The stiffness matrix and unbalanced force vectors are transformed to modal coordinates, 
where the stiffness matrix is diagonal. 
 

diag( )T
m i K Φ KΦ   (3.1) 

 
T

um uf Φ f   (3.2) 
 
in which Φ  is the modal matrix consisting of eigenvectors of K . 

6- In the modal coordinates, the incremental modal displacements umu  are determined by 

dividing each modal unbalanced force by the corresponding nonzero modal stiffness. If the 
modal stiffness is obtained to be zero (showing an unstable DF), the modal displacement in 
that DF is allowed to increase in the direction of its modal unbalanced force by a small 
amount, say  . It is recommended to take   as the average of incremental modal 
deformations in stable DF’s, to avoid abrupt changes in structural geometry. 

7- The calculated incremental modal displacements are transformed to the global coordinates 
system using: 
 

u um u Φ u   (3.3) 

 
8- The system geometry is updated based on the current values of column top displacements 

c u u u , and the internal forces of columns and fully tensioned cables are recalculated. 

9- Based on the new locations of cable supports, the cable forms are updated using a procedure 
similar to what described in Section 3.1, and the cable support reactions are recalculated. 

10- The above procedure is repeated from step 2, unless convergence is achieved. The 
convergence norms include (i) the norm of the displacement increments with respect to overall 
displacements, (ii) the norm of unbalanced forces with respect to the overall forces applied to 
column tops, and (iii) the norm of the variation of unbalanced forces with respect to the 
overall forces applied to the column tops. The convergence is achieved when these norms 
become smaller than the predetermined tolerances. 
 

It is seen that the above procedure tends to update the cable support points and the reactions applied to 
the supports simultaneously until the applied loads are balanced with the internal forces. To further 
stabilize this analysis procedure, it is possible to transfer the cable reactions to columns gradually 
through several increments. In this case, the complete transfer of forces must also be checked in each 
iteration as a convergence criterion. If after a considerable number of iterations, no further reduction in 
the unbalanced forces is observed, this may be a sign of an unstable structure, where an equilibrium 
configuration cannot be achieved. 
 
3.3 Updating the Equilibrium State in Response to External Loads 
 
Any modification of external loads may result in significant displacements and change of the structural 
geometry. Due to nonlinear behavior of the structures considered herein, the order of the application of 
the loads may alter the final equilibrium state, and hence, must be selected realistically. Similar to 
other nonlinear analysis procedures, the loads must be gradually modified from the previous 
equilibrium state towards their target values using suitable increments considering convergence and 



analysis speed. The equilibrium state should be updated in each load increment using the procedure 
described in the preceding section, until the incremental loads sum up to their desired values. 
 
 
4. ANALYSIS EXAMPLES 
 
Several numerical analyses have been carried out to verify the accuracy and efficiency of the proposed 
analysis procedure. A few illustrative examples are presented below. 
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Figure 4.1. Cable loads along x-axis and progressive determination of cable form 

 
4.1 Analysis of a Single Cable in Three Dimensions 
 
In order to illustrate the behavior of the proposed procedure for the analysis of cables, the progressive 
determination of an example is illustrated in Figure 4.1. The span length of the 36-meter-long cable is 
taken to be 35 meters, support B being 2.5 meters higher than support A. This cable is treated as a 
substructure with 20 segments. The load system applied to the cable at its internal nodes is also shown 
in Figure 4.1. As illustrated, the cable form is initially taken to be parabolic (shown by the dash-dot 
curve). In the first iteration, a relatively large change in the cable form is seen, resulting from the large 
differences of reactions at A from what are needed for equilibrium and compatibility. Then, the 
proposed procedure attempts to gradually modify the form (dashed curves) towards its final 
configuration (solid curve) using the learning procedure described in Section 2.2. With a convergence 
tolerance of 0.001 and a learning gain of 0.5, the number of required iterations is 65. The number of 
iterations required to determine the cable shape in subsequent analysis steps will be considerably 
smaller, since they usually comprise smaller changes in cable form than those of the first step. 
 
4.2 Analysis of a Slack-Cable-Suspended Roof 
 
The irregular hexagonal roof system shown in Figure 4.2 consists of seven compression-only pin-
ended columns located on a slope with lengths ranging from 24 to 30 meters. Each of the six columns 
on the perimeter of the structure are restrained with a pair of fully taut cables that anchor the column 
tops to the ground. These columns are tilted with a slope of 10% to the sides to increase the stability 
and load-bearing capacity of the structure. The center column is initially assumed to be vertical. The 
column tops are interconnected with primary slack cables, which in turn support several uniformly 
spaced secondary cables that span between primary ones. This structure is in fact a typical module of a 
design candidate for a bird park in Tehran (having 15 hexagonal units covering an area of more than 
50000 m2  – only one unit is presented herein for brevity and clarity of the results). 



 

 

 

 
 

Figure 4.2. Progressive analysis of a slack cable roof system (from left to right: initial cable forms, updated 
cable forms with supports fixed, and final form with column tops released) 

 
Figure 4.2 shows the results of analysis of the slack cable roof system subjected to a uniform 
gravitational dead load of 250 N/m2. Note that each step is plotted against a dashed outline of the 
previous step to highlight the displacements corresponding to that step. In the first step, all cables are 
assumed to have a parabolic shape in a vertical plane, and their lengths are specified to achieve a near-
uniform sag in the cables, being 9% of the span length for primary cables and 6% for secondary 
cables. Next, the cable forms are updated while preventing the translation of their supports; as a result, 
the primary cables deform in three dimensions in response to the unsymmetrical loads applied from 
secondary cables. In this step, the designer may choose to revise cable lengths to alleviate the uneven 
sag of the cables as a result of lateral movements of primary cables, noting that this usually intensifies 
the lateral cable displacements. Finally, the columns are released to gradually move towards achieving 
equilibrium and balancing the external loads. This usually leads to a lower energy state, in which the 
lateral displacements of cables are reduced. The amount of displacement at the top of the central 
column was calculated to be 95.3 cm, mostly towards east. 
 
Next, in addition to the above-mentioned dead load, a uniform lateral load of 100 N/m2 in the positive 
global X-direction is applied to all of the cables. The analysis results in Figure 4.3 show the lateral 
deformations in the secondary cables as well. In this case, the displacement of the central column from 
its originally-vertical position is obtained to be 140.5 cm. As a result, the sag of the cables to the east 
of the central column significantly increase. In order to further demonstrate the versatility of the 
proposed procedure to handle very large deformations and resolve numerical instabilities, a collapse 
scenario is assumed for the considered structure. After reaching the equilibrium state for dead load 
(Figure 4.2), it is assumed that one of the anchorage cables of the southwest column is removed and 
the structure is reanalyzed. The results shown in Figure 4.4 demonstrate a large displacement at the top 
of the column with a failed cable: 291.1 cm and 43.5 cm in the east and south directions, respectively. 
The displacement of the central column towards east also increases to 119.2 cm. It should be noted 
that reaching the equilibrium state in these conditions that comprise sudden changes in the internal 
force system may take several hundred iterations using the proposed procedure. 
 



 
 

Figure 4.3. Example slack cable roof system subjected to lateral load from west to east 

 

 
 

Figure 4.4. Extreme loading scenario: gravitational dead load with removal of one of the anchorage cables 

 
5. CONCLUSIONS 
 
An effective iterative approach is proposed for the analysis of highly unstable structures consisting of 
slack cables and bar elements. A specialized substructuring technique is used for the analysis of slack 
cables to reduce the processing costs and memory requirements, and to alleviate the cable instability 
issues before reaching the equilibrium state. The procedure to determine the cable form and internal 
forces uses sensible learning relations that progressively adapt the cable form to satisfy the equilibrium 
and compatibility requirements. Furthermore, the singularities in the overall structural level are 
addressed by recognizing the unstable DF’s and restricting the corresponding displacement 
increments. Using these procedures, the structural form corresponding to load combinations consisting 
of gravitational and lateral loads can be accurately determined. The proposed method is successfully 
applied to the analysis of several slack-cable structures that exhibit a considerable degree of 
instability. It is shown that this method can be used in the analysis of structures with very large rigid-
body displacements and rotations, such as when collapse scenarios are examined. Further study is 
underway for the application of this method to dynamic analysis of slack-cable systems. 
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