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SUMMARY: 
In this paper, a new numerical model is presented which is capable of reproducing the interaction between 
the normal and shear stresses in static and dynamic analysis of reinforced concrete frame structures. In 
contrast to other more complex models, the multiaxial problem is approximated using a beam element 
(1D) and a sectional model. The sectional formulation uses generalized coordinates in order to simulate 
the state dependent warping, distortion and stress-strain distribution after cracking and up to failure. The 
formulation is here implemented into a flexibility-based frame element, which allows considering the 
influence of shear on the dynamic response of frames structures and to evaluate their seismic behaviour. 
A reinforced concrete frame is analysed using push over and dynamic time history analysis. In order to 
determine the effects of shear sensible considerations in the seismic response, these results are compared 
against shear rigid analyses. 
  
Keywords: Shear forces, Dynamic response, Ductility, Sectional formulation, Flexibility formulation  
  
  
1. INTRODUCTION 
  
The seismic response of reinforced concrete structures is a complex phenomenon due to the 
presence of alternating normal and tangential stresses, inclined cracks and multi-axial stress 
states. The recently observed shear failure in the Hanshin Expressway in Kobe (1995) or the 
Bei-Fong Bridge in Taiwan (1999) highlight the need for analysis and design tools, which 
adequate capture the seismic response in practical engineering. 
  
Beam-column models are suitable for seismic analysis of frame structures, especially after 
recent progresses in incorporating the effect of shear stress at the sectional level. However, 
although some of these models adequately simulate the ultimate load, they often underestimate 
the structural displacements due to the assumed shear stress or strain distribution at the sectional 
level. Moreover, such assumption affects the predicted failure mode and achieved ductility, 
which are of great importance in the seismic behaviour. 
  
In section 2, a simplified model is presented for the accurate consideration of shear forces in 
strength, deformation, material state and damage. This model was assessed to be suitable for the 
non-linear analysis of frame structures. The tangential stress and strain distributions in concrete 
and transverse reinforcements are not predefined, but they are obtained from an inter-fibre 
equilibrium and compatibility conditions. Therefore, polynomial series are defined in order to 
represent the warping and distortion of the cross-section. The systematic formulation of the 
model easily allows varying the level of accuracy by modifying the number and degree of the 
polynomials considered, thus reproducing both simple classical theories and advanced 
kinematical distribution when required. The sectional model has been embedded in beam-
column elements, which allows static and dynamic structural analysis considering the effect of 
shear in an efficient way. The model has been verified elsewhere using the results of 



experimental campaigns over shear sensible structures, (Mohr et al, 2010) and (Mohr, 2011).  
 
The developed model can adequately reproduce the interaction between normal and tangential 
stresses in structural analysis. In this manner, it is possible to consider the influence of shear 
stresses in the dynamic response. The influence of shear stresses in the seismic behaviour will 
be studied in this paper by analysing a 2D RC-frame by means of non-linear static analysis 
(push-over) and dynamic time-history analysis, including different transverse reinforcement 
ratio. The same structure is analysed with a standard Navier-Bernoulli model for comparison 
purposes.  The different effects of shear are observed and discussed in the paper showing the 
capabilities of the proposed model. 
  
  
2. SECTIONAL FORMULATION 
  
The model presented in this paper was developed by the authors in (Mohr et al, 2010). It keeps 
the hypothesis presented in (Bairán and Marí, 2007) according to which the full displacement 
field of any fibre in the cross-section can be approximated by the sum of the plane-section 
displacement field, similar to the Navier-Bernoulli hypothesis (ups), and a new displacement 
field that enables the section to distort and warp (uw): 
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In this model, instead of describing the warping distribution by means of a planar finite element 
model of the cross-section, it is approximated by means of a polynomial series of increasing 

order. Therefore, the warping and distortion displacements w
xu  and w

zu  are simulated by finite 

series of predefined shape functions and coefficients as presented in figure 1, that is: 
  

 
Figure 1. Warping approximation by means of a finite series 
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where f is a vector which holds the predefined shape functions. ng is the number of terms used 
in the series to represent the warping deformation. The predefined shape function are gathered 
in a vector fg and the corresponding factors are gathered in γ (ngx1). In the same way, fe and ε 
are obtained (nex1), where ne is the number of terms used in the series to represent the 
distortion. 
 



The model uses as predefined shape functions polynomial terms of increasing order. The first 
term in the finite series is given by: 
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The higher order terms in the polynomial series are obtained with general expressions, which 
can be found in (Mohr, 2011). The coefficients for the predefined shape functions are 
summarized in a vector a with dimension n = ng+ne: 
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This vector ( a


) contains the unknown coefficients which modulate the shape functions in order 

to adequately approximate the actual distribution of warping and distortion. The components of 
a


 are state dependent and are determined by means of internal equilibrium consideration: 
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This equilibrium can be solved locally at every cross-section without additional degrees of 
freedoms in order to consider multi axial stress states. Therefore, the system of equation is 
solved with a nonlinear iterative procedure.  This requires the definition of constitutive equation 
for steel and concrete in order to evaluate the sectional state.  For the further analysis, a uniaxial 
model is used for the longitudinal and transversal reinforcement bars and assumes a bilinear 
steel behaviour. The multi-axial concrete stresses are obtained with a model presented in 
(Bairán and Marí, 2007), which is based on the rotating-smeared crack approach. The sectional 
formulation is independent form the constitutive equations, so that the material state can also be 
evaluated with formulations presented in (Vecchio and Collins, 1986) and (Pang and Hsu., 
1995) among others. 
 
This general approach allows the selection of different terms, ng and ne, in order to estimate the 
warping and distortion deformations respectively. As a consequence the sectional model 
automatically reproduces Navier-Bernoulli’s or Timoshenko’s hypotheses by considering zeros 
in both series, or one warping term and zero distortion in the polynomial series, respectively. It 
should be noticed, that this model can only be used for a general shaped section symmetric to 
the z-axis. 
 
The ability of the sectional model can be shown by analysing the column section of the frame 
presented in figure 4. Therefore, several loading scenarios, sectional kinematics and transversal 
spacing have been considered in sectional analysis using the presented sectional scheme. A total 
of six analyses have been performed, which are defined in table 1 assuming a shear span (M/V) 
of 1.0 m. The analyses A1 and A4 considers only the normal stress interaction due to the 
selection of ng = ne = 0 and simulate a shear rigid behaviour. Consequently the spacing of the 
transversal reinforcement has no effect on the obtained response. The other analyses consider 
the same moment - shear relation, but the interaction of normal and shear stresses is activated by 
selecting ng = ne = 6 and the transversal reinforcement spacing affects the sectional response. 
The resulting moment curvature diagrams for the six analyses are the presented in figure 2. 
  
The presented sectional model considers in a realistic way the influence of the shear stresses and 
needs the transversal reinforcement in order to equilibrate the compression strut. The result is a 



stress increment in the longitudinal reinforcement. Consequently the considered spacing of 60 
and 150 mm results in different first yield bending moments and post yield stiffness of the 
section. It can be observed, that the adequate consideration of shear stresses has a significant 
influence on the moment - curvature response, which should also affect the curvature ductility 
used in the seismic design of RC members. 
 
Table 1. Definition of sectional analysis  

Name Axial load Section kinematics Spacing transversal reinforcement 
A1 0.0 kN ng= 0; ne = 0 not considered 
A2 0.0 kN ng= 6; ne = 6 s = 60 mm 
A3 0.0 kN ng= 6; ne = 6 s = 150 mm 
A4 -200.0 kN ng= 0; ne = 0 not considered 
A5 -200.0 kN ng= 6; ne = 6 s = 60 mm 
A6 -200.0 kN ng= 6; ne = 6 s = 150 mm 

    

a) Sectional response without applied axial load b) Sectional response with applied axial load

Figure 2. Moment curvature diagrams 
  
The sectional model has been embedded in shear flexible beam elements. The resulting 
structural model allows the consideration of shear normal stress interaction in static and 
dynamic structural analysis. The conceptual idea is presented in figure 3 and detailed 
information about the structural model (Mohr et al, 2010) and (Mohr, 2011). In these references, 
the sectional and structural formulation has been verified by reproducing displacements, stresses 
and strains in the concrete and in the reinforcements. 
 

 
Figure 3. Computational model of beam column elements with cross section 

 
 
3. EFFECTS IN PUSH OVER ANALYSIS 
  
The influence of shear stresses in the curvature response, observed in the previous sectional 
analyses, can be considered in structural analysis. Therefore a two story frame, presented in 
figure 4, will be analysed considering a shear flexible behaviour (SF) by selecting six terms in 
warping and distortion series (ng=ne=6). In addition, a shear rigid model (SR) is provided as 
numerical reference (ng=ne=0), this is equivalent to a Navier-Bernoulli formulation. Both 
analyses consider as permanent loads the self-weight of the frame and a distributed load of qz = 
20kN/m on both first and second story. The assumed concrete and steel strength are the 
following: concrete fck = 30 MPa fct = 2 MPa and steel fy = 400 MPa. Ultimate compression 



strain for unconfined concrete is taken as cu=0.004; ultimate strain in steel is su=0.1. Both 
numerical models for the two story frame will be loaded with a linear lateral load pattern, so that 
the lateral load at node 5 is two times the one at node 3. 
  
The column and beam sections of this frame are presented in figure 4 and define the 
longitudinal reinforcement arrangement in the SR and SF analysis. In addition, the SF analysis 
requires the definition of the transversal reinforcement. The spacing of the stirrups outside the 
plastic hinge region is 150 mm for the beam and column elements. In the plastic hinge region 
the column and beam sections consider a smaller spacing of 60 and 80 mm respectively. All 
sections have a transversal reinforcement diameter of 10 mm, obtained by neglecting the 
concrete contribution (Vc=0.0 kN) in the shear design, as required in seismic provisions for 
ductile frames. This assumption should ensure that several longitudinal reinforcement bars yield 
before the stirrups.  
  

 

 

 

Figure 4. Two story reinforced concrete frame [mm] 
  
The results of the push-over analyses are presented in figure 5 for two section kinematics. These 
curves show the relationship between the applied lateral load and the corresponding lateral 
displacement at node 5 (roof).  In figure 5, it can be noticed that the shear rigid analysis (SR) 
defines an upper bound for the lateral load that can be resisted by the structure. The shear 
flexible analysis shows a lower resisted lateral load than the shear rigid one.  
 
A simplified bilinear representation of the push-over curve can be used to quantify the strength 
and ductility characteristics of the frame. This curve is determined using the condition of equal 
areas under the load–displacement curves. The obtained values for the three analyses are 
summarized in table 2. In addition, this table includes displacement ductility of the frame (μd = 
dmax/dys) and the displacements where the first longitudinal (dy

l) and transversal (dy
t) bar yielded 

in the push over analyses. The ductility of the structure is overestimated in the shear rigid 
analysis, since smaller values are obtained considering the effect of shear.  
  



 
Figure 5. Load – displacement curve for the shear rigid and flexible structural model 

  
The large advantage of the presented formulation is that different beam theories can be 
simulated using the same element formulation, section discretization and constitutive models. 
Consequently, the only difference between SR and SF analyses is the considered section 
kinematics. 
  
Table 2. Summarized values for the idealized load displacement curve and displacement ductility 

Model dy
l [mm] 

(longitudinal 
reinforcement) 

dy
t [mm] 

(transversal 
reinforcement)

dys [mm] 
(bilinear 

representation)

dmax [mm] 
(max. 

displacement)

Pmax [kN]  
(max. lateral 

force) 

μd 
(displacement 

ductility)
SR 25.9 - 80.3 221.9 144.5 2.8 
SF 24.7 126.1 87.7 229 140.5 2.6 

  
  
4. EFFECTS IN DYNAMIC ANALYSIS 
  
In this section, the two storey frame is subjected to a dynamic excitation. Therefore, structural 
properties such as geometry, materials and permanent loads are taken identical to the previous 
push-over analysis. In addition, the mass matrix of the system has to be computed for dynamic 
analysis. The self-weight of the beams and columns are considered in a consistent mass matrix 
with additional entries considering the mass of the distributed load.  
 
The time dependent load will subject the frame to large cycles in the ultimate limited range. The 
study is aimed to estimate the maximum structural response and possible failure due to the 
seismic action. In this paper, no elastic structural damping is considered in the dynamic 
equilibrium. However, hysteretic damping will be activated due to yielding of several 
reinforcement bars. 
  
The frame will be subjected to a real earthquake excitation, in this study the North-South 
component of "El Centro" has been considered to conduct this analysis. The peak ground 
acceleration of this earthquake record is 0.32g and the acceleration history is presented in figure 
6. 
 
The dynamic response of the two storey frame is obtained considering again a shear rigid (SR) 
and flexible (SF) behaviour with a stirrup diameter dt = 10mm for the SF analysis. Therefore, 
the generalized α method, presented in (Chung and Hulbert., 1993), is used, which requires the 
definition of several parameters in order to control the numerical damping properties of the 



solution algorithm. These parameters are selected as αf = 0.1, αm = −0.1, βN = 0.36 and γN = 0.7 
using the recommendation made in (Erlicher, Bonaventura and Bursi, 2002). 

 
Figure 6. Ground acceleration “El Centro” N-S  

 
Figure 7 shows the horizontal displacement responses for the second floor. This result shows 
different oscillations for the SR and SF analyses and maximum displacements are predicted at 
different times (-99.7 mm for SR at 11.7 s and -80.7 mm for SF at 2.2 s). The consideration of 
shear stresses changes the stiffness of the frame and consequently the internal force 
redistribution and period of the structure.  
 

 
Figure 7. Second floor displacement response (node 5) 

 
The differences in the displacement response between SR and SF analyses can also be observed 
in the calculated base shear, which is presented in figure 8. This figure indicates again that 
different base shear histories are obtained, due to the change of stiffness and period as 
previously stated. The maximum base shear values are -134.7 kN for SR and -124.5 kN for SF. 
By comparing, the maximum base shears obtained in the dynamic analyses with the values 
estimated in the push over analyses (see table 1), it can be observed that the two story frame has 
been loaded in the ultimate limited range by the considered ground acceleration.  The first story 
drift for the SR analysis was estimated at 11.7 s, which coincides with the maximum horizontal 
displacement shown in figure 7.  



 
Figure 8. Calculated base shear history 

 
The large rotation at the bottom of the left column results in large plastic strain in the external 
reinforcement layer. Figure 9 shows the strain histories of this layer for the SR and SF analyses. 
The largest rotations and long bar strains are estimated in the first floor beam. There large 
rotations are desired in seismic design in order dissipate energy in these plastic hinge regions. 
Long bar strain responses for the left end of the first story beam are presented in figure 10 for 
both models. In the first seconds of the seismic excitation, the stress increment in the 
longitudinal reinforcement can be observed in the estimated strains for the SF analysis. After the 
yielding of several longitudinal bars, the shear flexible analysis shows a larger damping effect, 
due to inclined cracks that result by the consideration of shear.  
 
It is noticed that, although concrete contribution to shear strength is neglected in design of the 
transversal reinforcement, yielding of stirrups take place after several cycles and large 
displacement; which indicates the degradation of shear resistance mechanism in cyclic large 
magnitude excitations.  One example is presented in figure 11 for the left plastic hinge region of 
the beam at section mid height. The transversal strain response shows that the presented 
sectional and structural model is suitable to investigate in further studies the axial shear bending 
interaction in dynamic analysis.  
 

 
Figure 9. Strain response for the external longitudinal bars at the bottom of the left column 



 
Figure 10. Strain response for long bar in the first floor beam (left plastic hinge region)  

 
Figure 11. Strain response for stirrup (plastic hinge region of the beam) 

 
 
5. CONCLUSIONS 
  
The presented results show the influence of axial-shear-bending interaction in the static and 
dynamic response of reinforced concrete structures. The consideration of shear stresses in the 
section internal equilibrium affects in several ways in the seismic response of reinforced 
concrete frames. The effect of shear provokes a stress increment in longitudinal reinforcement, 
which is adequately captured with the presented formulation. In addition, the presence of large 
shear stresses changes the stiffness of the frame and consequently the natural frequency of the 
system. This effect has been observed in the displacement and base shear responses considering 
shear rigid and flexible structural behaviour. The adequate simulation of the shear changes the 
internal force redistribution and affects the ductility of the structure. It can be concluded, that 
load - displacement curves obtained with a shear rigid analysis only define an upper bound for 
the lateral load.  
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LIST OF SYMBOLS 
 
Latin letters 
Ԧܽ Vector containing warping distorsion 

coefficients 

݀௬௟   First yield displacement longitudinal bars 

݀௬௧   First yield displacement transversal bars 

݀௠௔௫ Maximum lateral displacement 
݀௬ୱ   Yield displacement in bilinear push over 

curve estimation 
f Predefined shape functions 
F Vector of predefined shape functions 
fୡ୩  Concrete compression strength 
fୡ୲  Concrete tension strength 
f୷  Steel yield strength  

h Section height 
M Bending moment 
nୣ Number of terms for the warping series 
n୥ Number of terms for the distorsion series 

P୫ୟ୶  Maximum lateral force in push over curve 
u୮ୱ Plane section displacement field 
u୵ Warping-distorsion displacement field 
u଴ Normal displacement 
V  Shear force 
w଴ Transversal displacement 
x Local axis along the beam 
z Local axis orthogonal to beam axis x 
Greek letters 
γ Coefficients for the sectional warping 

displacement 
ε Coefficients for the sectional distorsion 

displacement 
Θ୷଴ Rotation angle around y-axis 

µୢ  Displacement ductility 
σ  Stress 
τ୶୸  Shear stress 
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