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SUMMARY: 
The earthquake ground motion potential is commonly presented by an intensity measure (IM) in seismic fragility 
evaluation. Scalar-valued intensity measures usually could not describe the magnitude and distance dependences 
of ground motion characteristics that significantly affect variability of fragility assessment. Alternative 
vector-valued IMs comprised of two ground motion parameters were used to present the ground motion potential. 
All the vectors considered here are based on 1  (spectral acceleration at the first mode period of vibration of 
the structure) as the first parameters. As the second parameter of the vector, the peak ground velocity (PGV) and 
spectral shape parameters 1 2

( )aS T

,T TR  and pN  were considered. The sufficiency and efficiency of these IMs were 
studied for medial-story RC frame structures and vector-valued IM based fragility surfaces were developed. It is 
shown that fragility surfaces based on vector-valued IMs are better able to represent the damage potential of 
earthquake than fragility curves.  
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1. INTRODUCTION 
 
The damage potential of earthquake ground motion is usually characterized by a ground motion 
parameter called the intensity measure (IM) in seismic vulnerability assessment. A good IM should 
meet the requirement of efficiency and sufficiency (Lucco, 2002). Efficiency means the ability to 
accurately predict the response of a structure subjected to earthquakes (i.e., small dispersion of 
structural response subjected to earthquake ground motions for a given IM). And a sufficient IM is 
defined as one that renders structural responses subjected to earthquake ground motions for a given IM 
conditionally independent of other ground motion properties (i.e., no other ground motion information 
is needed to characterize the structural response). An efficient IM results in smaller variability of 
structural response, which implies fewer ground motion input for performance evaluation. Sufficiency 
of an IM is desirable because it reduces the complexity of record selection procedure based on seismic 
environment (i.e., magnitude, distance, site conditions, etc.) 
 
In the past, peak ground acceleration (PGA) was commonly used as an IM. Simplicity is the main 
advantage of PGA, but it results in great dispersion of structural response. More recently, the spectral 
acceleration at the first mode vibration of the structure, , has been thoroughly studied and became 
very popular. This IM contains ground motion spectral information as well as dynamic character of 
structure, so it’s more efficient and sufficient than PGA (Hwang HHM and Huo JR, 1990, 1994; 
Shinozuka M, et al., 2000). However, earthquake disaster experience and strong ground motion data 
show that the structural seismic response depends on ground motion amplitude, spectrum, and 
duration characteristics simultaneously, and the different combinations of these three elements 
determine the degree of safety of the structure. Numerous studies also showed that scalar-valued IM 
such as  couldn’t comprehensively describe the complex nature of earthquake ground motions, 
resulting in great uncertainty in vulnerability assessment (Hanks TC and McGuire RK, 1981; Shome 
N, et al., 1998; Song J and Ellingwood BR, 1999; Ellingwood BR, 2001; Kafali C and Grigoriu M, 
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2004; Schotanus MIJ, et al., 2004). In order to accurately characterize the ground motion potential, 
some researchers promote the use of vector-valued IMs and some progress has been made (Cordova, 
P.P, et al., 2001; Baker JW and Cornell CA, 2004, 2005; Luco N, et al., 2005; Kafali C and Grigoriu 
M, 2007; Rajeev P, et al., 2008; Sei’ichiro Fukushima, 2010; D.M.Seyedi, et al., 2010).  
 
Although previous researchers have shown that using vector-valued IMs can lead to a better prediction 
of the structural damage, very few have gone the extra step to develop vector-valued IM based 
vulnerability functions. The aim of this paper is to evaluate the seismic vulnerability of medial-story 
RC frame structures by means of several vector-valued IMs. All the vectors considered here are based 
on 1  (spectral acceleration at the first mode period of vibration of the structure) as the first 
parameters. As the second parameter of the vector, the peak ground velocity (PGV) and spectral shape 
parameters 

( )aS T

1 2,T TR  and pN  were considered. The efficiency and sufficiency of these IMs were studied 
and vector-valued IM based fragility surfaces were developed. It is found that fragility surfaces based 
on vector-valued IM are better able to represent the damage potential of earthquake than fragility 
curves. 
 
 
2 VECTOR-VALUED IMS SELECTED 
 
The seismic fragility of the structure is evaluated using three different vector-valued ground motion 
IMs.  is used as the main parameter (denote as IM1) of the vector-valued IMs because it has 
been found to be a good scalar-valued IM. The three vector-valued IMs are + , +

1( )aS T

1( )aS T , aPGV SR
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1 2,T TR  
and +1( )aS T pN , where the second parameters (denote as IM2) are defined as: 
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In Eqn. 2.1, PGV is used to study the impact of peak ground motion on structural response. The 
parameter 1 2  in Eqn. 2.2 is defined as the ratio between the spectral acceleration at period T2 
divided by spectral acceleration at period T1, as shown in Figure 2.1.  
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Figure 2.1. Calculation of for a given response spectrum 
1 2,T TR

 



The parameter  is defined as the ratio between  divided by spectral acceleration at 
period T1, where  is the geometric mean of spectral acceleration between an specific 
period range TM to TN, as shown in Eqn. 2.4. 1 2

Np , ( ,... )a avg M NS T T

, ( ,... )a avg M NS T T

,T TR  and  are representative of the spectral shape, 
which may account for the impact of higher mode effect and structural softening effect on structural 
response. Here, the normalization between  let the second parameter be independent of the 
scaling level of the records based on . 
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3 STRUCTURAL MODEL AND GROUND MOTION RECORDS 
 
3.1 Structural Design Parameters 
 
A regular RC frame structure of eleven-story was selected for case study. This frame was designed 
according to the Chinese Seismic Design Code (GB50011-2001) with the seismic fortification 
intensity of Ⅶ, design basic acceleration of ground motion if 0.15g and design characteristic period of 
ground motion of 0.3s. The structure has three bays of 7.2m and eleven stories. The height of the first 
story is 4.5s and other stories are 3.6m. The section dimensions of structural members and materials 
are list in Table 3.1.1 and average strength of the materials are list in Table 3.1.2. 
 
Table 3.1.1. Section Dimensions and Materials of Structural Members 

Story 
Number 

Side Column 
(mm×mm) 

Middle Column 
(mm×mm) 

Beam 
(mm×mm) 

Concrete Steel Bar 

1-6 Story 600600 650700 300700 C30 HB335 
7-11 Story 550550 600650 300700 C30 HB335 

 
Table 3.1.2. Average Strength of the Materials (N/mm2) 

 Strength of C30 Elastic Modulus of C30 Strength of HB335
Elastic Modulus of 

HB335 
Mean 26 32400 392 200000 

 
3.2 Nonlinear Dynamic Analysis Model 
 
A modified version of the DRAIN-2DX (Prakash V, et al., 1993) program was used to create the finite 
element model and perform the nonlinear dynamic response history analysis. The structural 
components were modeled by beam-column element with plastic hinges. A 2% strain-hardening ratio 
was considered to model the cyclic behavior of the structural components P-Δ effect was considered 
by adding a geometric stiffness matrix to the stiffness matrix of each element. Different yield surfaces 
were specified to beam members and column members to distinguish the different mechanic behaviors. 
The critical damping ratio was assumed to be 5%. The fundamental period of the structure is 1.6s 
according to modal analysis. 
 
3.3 Failure Criterion 
 
Five damage states are adopted, that are undamaged, slight damage, moderate damage, intensive 
damage and collapse. And the maximum inter-story drift ratio is selected as damage measure. Based 
on a large number of experiment data of RC frames, Gao Xiaowang proposed the method for 
calculating threshold maximum inter-story drift ratio for the onset of slight damage, moderate damage, 
extensive damage and collapse states. Lognormal distribution was adopted to describe the threshold 
value. The mean values and coefficient of variation of threshold maximum inter-story drift ratios for  
 
Table 3.3.1. Mean Values and Coefficient of Variation of Threshold Maximum Inter-story Drift Ratios 

Damage States Slight Damage Moderate Damage Extensive Damage Collapse 

Mean Value 1/350(0.0286%) 0.654% 1/80(1.25%) 3.6% 
Coefficient of Variation 0.38 0.38 0.38 0.38 



the five damage states are calculated. Results are shown in Table 3.3.1.  
 
3.4 Ground Motions for Fragility Assessment 
 
According to the recommendations of ATC-63, 40 ground motions records were selected to perform 
the fragility assessment. Several principles were followed in the record selection procedure as below: 
 
(1) free-field records; (2) no pulse feature; (3) HP larger than 0.25Hz. Several important characteristics 
of the records are summarized in table 3.4.1. 
 
Table 3.4.1 Important Characteristics of the Records 
Record Event Year Mw Station PGA(g) PGV(cm/s) 

1 Imperial Valley-06 1979 6.53 Calipatria Fire Station 0.078 13.3 
2 Imperial Valley-06 1979 6.53 Chihuahua 0.27 12.42 
3 Imperial Valley-06 1979 6.53 Compuertas 0.186 6.91 
4 Imperial Valley-06 1979 6.53 El Centro Array #1 0.139 15.84 
5 Imperial Valley-06 1979 6.53 El Centro Array #12 0.116 21.8 
6 Imperial Valley-06 1979 6.53 El Centro Array #13 0.139 13.0 
7 Imperial Valley-06 1979 6.53 Niland Fire Station 0.109 11.87 
8 Imperial Valley-06 1979 6.53 Plaster City 0.111 17.79 
9 Imperial Valley-06 1979 6.53 Parachute Test Site 0.057 5.39 

10 Imperial Valley-06 1979 6.53 Westmorland Fire Sta 0.11 21.89 
11 Loma Prieta 1989 6.93 Agnews State Hospital 0.172 25.94 
12 Loma Prieta 1989 6.93 Capitola 0.443 29.21 
13 Loma Prieta 1989 6.93 Coyote Lake Dam (Downst) 0.16 13.04 
14 Loma Prieta 1989 6.93 Gilroy Array #3 0.367 44.66 
15 Loma Prieta 1989 6.93 Gilroy Array #4 0.212 37.86 
16 Loma Prieta 1989 6.93 Gilroy Array #7 0.225 16.4 
17 Loma Prieta 1989 6.93 Halls Valley 0.134 15.4 
18 Loma Prieta 1989 6.93 Hollister Diff. Array 0.279 35.57 
19 Loma Prieta 1989 6.93 Palo Alto - SLAC Lab 0.194 37.45 
20 Loma Prieta 1989 6.93 Salinas - John & Work 0.112 15.68 
21 Loma Prieta 1989 6.93 Sunnyvale - Colton Ave. 0.207 37.28 
22 Northridge-01 1994 6.69 Arcadia - Arcadia Av 0.104 7.32 
23 Northridge-02 1994 6.69 Baldwin Park - N Holly 0.123 8.17 
24 Northridge-03 1994 6.69 Canoga Park - Topanga Can 0.42 60.69 
25 Northridge-04 1994 6.69 Downey - Birchdale 0.171 8.12 
26 Northridge-05 1994 6.69 Elizabeth Lake 0.109 8.96 
27 Northridge-06 1994 6.69 Glendale - Las Palmas 0.206 7.39 
28 Northridge-07 1994 6.69 LA - Centinela St 0.322 22.86 
29 Northridge-08 1994 6.69 LA - Fletcher Dr 0.24 26.22 
30 Northridge-09 1994 6.69 LA - N Faring Rd 0.273 15.8 
31 Northridge-10 1994 6.69 LA - Pico & Sentous 0.186 14.23 
32 Northridge-11 1994 6.69 LA - Saturn St 0.474 34.48 
33 Northridge-12 1994 6.69 LA - Univ. Hospital 0.214 10.76 
34 Northridge-13 1994 6.69 La Crescenta - New York 0.159 11.28 
35 Northridge-14 1994 6.69 Lawndale - Osage Ave 0.153 7.95 
36 San Fernando 1971 6.61 LA - Hollywood Stor FF 0.174 14.85 
37 Superstitn Hills 1987 6.54 Brawley Airport 0.156 13.89 
38 Superstitn Hills 1987 6.54 Calipatria Fire Station 0.247 14.54 
39 Superstitn Hills 1987 6.54 Plaster City 0.186 20.62 
40 Superstitn Hills 1987 6.54 Poe Road (temp) 0.446 35.71 

 
 
4 EVALUATION OF SEISMIC FRAGILITY USING VECTOR-VALUED IMS 
 
Seismic fragility assessment for the vector valued intensity measures is developed by incremental 
dynamic analysis (IDA) (Dimitrios Vamvatsikos and C.Allin Cornell, 2002) of the structure subject to 



the records by using the first parameter of the vector IM1, in this case , and then using log-linear 
regression model to account for the impact of the second parameter IM2. Figure 4.1(a) shows IDA 
curves based on a vector valued intensity measure:  and

1( )aS T

, 2( 3
1( )aS T

1 2
.0T T )R T s . The point where each 

IDA curve first reaches maximum inter-story drift ratio of 1% (indicated by red circles) defined a set 
of IM capacity values. These points are plotted in Figure 4.1(b). It is apparent in Figure 4.1(b) that the 

 capacity (denoted by ) tends to be larger for smaller1( )aS T 1( )a caS T p )
1 2, 2T T ( 3.0R T s , in other words, the 

structural response tends to be larger for larger 1 2
3.0T T, 2( )R T s  when records are scaled to a specific 

 level, which means that 1( )aS T
1 2T T, 2( 3.0 )R T s  can explain part of the variation of  capacity or 

variation of structural response. In Figure 4.1(b) the conditional distribution of  appears to 
be linearly dependent upon 

1( )aS T

1( )aS Tln cap

1 2, 2( 3.0 )ln T TR T s , so log-linear regression can be used to find the 
conditional mean and standard deviation of  given 1)a cS Tln ( ap 1 2, 2T T ( 3.0 )R T s , i.e.: 1( )a capS Tln  and 1( )a capS T . 
Then T2 is selected over arrange of possible values for 1 2,T TR  to maximum efficiency, or 
minimize 1( )a capS T . A plot of fractional reduction 1( )capTin aS (compared to scalar valued 1( )aS T  

1 2,T T

 IM ) by
R  for different T2 values is shown in Figure4.2, where the inter-story drift ratio demand is 1%. We 
see that the optimal T2 value is 2.4s, which can result in a minimum dispersion 1( )a of capS T . 
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Figure 4.1. (a) Incremental dynamic analysis with a vector valued intensity measure, and1( )aS T
1 2, 2( 3.0T T )R T s ; 

(b) ,1( )aS T
1 2, 2( 3.0T T )R T  s pairs as well as the log-linear regression result corresponding to occurrence of 1% 

maximum inter-story drift ratio  
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Figure 4.2. Fractional reduction in dispersion of  by 1( )a caS T p 1 2,T TR  for T2 between 0.3s and 3.4s for a drift 

demand level of 1% 
 



This optimal T2 value is only relevant for a single level of drift demand. We can repeat the same 
calculation to different levels of drift demand and shown the result in Figure 4.3. It is apparent that the 
optimal T2 value varies depending on the drift demand level. For lower drift demand level, for 
example , we find that the optimal T2 is about 0.5s. This is near 0.54s: the second-mode 
period of vibration of the structure. For higher level of drift demand, for example 0.01, we find 
that the optimal T2 is larger than T1, here T2=2.4s is the best choice. The above trend can be seen more 
clearly in Figure 4.4, which shows fractional reduction in dispersion of  vs drift demand level 
for T2 between 0.3s and 3.4s. 
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Figure 4.3. Fractional reduction in dispersion of  by 1( )a caS T p 1 2,T TR  for T2 between 0.3s and 3.4s for different 

drift demand levels 
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Figure 4.4. Fractional reduction in dispersion of versus drift demand level for T2 between 0.3-3.4s 1( )a caS T p

 
If one were to combine engineering intuition with the results of figure 4.2 and Figure 4.3, the 
following conclusion might be drawn, keeping in mind that the seismic response of this eleven-story 
structure is first-mode dominated (mass-participation coefficient of first-mode is 0.83): for lower level 
of drift demand with no structural nonlinearly, the optimal T2 to incorporate would be near the 
second-mode period of vibration of the structure. Note that at this level of drift demand the structure 
stays linear, an optimal T2 for 1 2,T TR which can account for higher mode effect would be more efficient. 
And for higher level of drift demand such as 0.01, then the optimal T2 will be larger than T1. 
Note that for this drift demand level significant nonlinear behavior appears in the structure, and the 
fundamental period of the structure would be lengthened because of structural softening effect, so 

max 

1 2,T TR with T2 values lager than T1 would be more efficient. For this eleven-story structure, T2=1.5T1 is 
the best choice. It is also apparent that the fractional reduction in dispersion of  by using 1( )a caS T p 1 2,T TR  
for larger T2 values at high level of drift demand is much more significant than by using 1 ,T T2

R  for 



smaller T2 values at low level of drift demand, which means that the impact of structural softening 
caused by nonlinearly on response is much more significant than higher mode effect. So 1 2,T TR  for 
T2=1.5T1 is chosen as the second parameter of the vector to evaluate the fragility. 
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Figure 4.5. Fractional reduction in dispersion of vs drift demand level by means of different 

vector-valued IMs 
1( )a caS T p
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Figure 4.6. Fragility surfaces based on 1( )aS T Np  for four damage levels: (a) slight damage; (b) moderate 
damage; (c) extensive damage; (d) collapse 
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Figure 4.7. based fragility curves at different values: (a) slight damage; (b) moderate damage; (c) 
extensive damage; (d) collapse 

1( )aS T Np

 
Using the same method, fractional reduction in dispersion of  by means of 1( )a caS T p Np  and , aPGV SR  is 
calculated. The efficiency of different IMs is compared, as shown in Figure 4.6. Here Np  is 
calculated with the period between 1.6s and 3.2s based on the result in Figure 4.5. We find that Np  is 
the most efficient parameter for a vector IM to evaluate the structural response, which indicates that 
spectra shape in a range of period larger than T1 is an important character of records for structural 
seismic demand analysis. It is apparent in Figure 4.4 that , aPGV SR  shows less efficiency than Np  and 

1 2, 2( 2.4T T )R T s . 
 
Figure 4.6 shows the developed fragility surface based on a vector-valued IM:  and . These 
surfaces can be visualized as fragility curves by projecting the surface onto the  planes, as 
shown in Figure 4.7. These figures demonstrate the wide variation between fragility curves based on 
scalar-valued intensity measure, e.g. . Scalar-valued IM ( ) based fragility curves can’t 
incorporate the variability in ground motion as measured by another parameter, . It can be seen in 
Figure 9 that there can be a discrepancy of up to 70% between two curves (i.e., collapse probability of 
10% for =0.3 and 80% for =0.5 at =0.5g). The main advantage of fragility surfaces is 
that the variability of structural fragility due to a second parameter can be accounted for in contrast to 
when fragility curves are used. This means that which  records should be used depends on the 
seismic hazard at the site when scalar-valued IM  is used to evaluate the structural fragility. 
This information varies from site to site. Ignoring the effect of  will ultimately bias the results. 
For example, if the seismic hazard disaggregation suggests that extreme motions are associated with 
records having a mean value of  of about 0.9, but records are selected with a mean value of of 
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about 0.3, then the -based result will underestimate the seismic fragility. In other words, 
evaluation of structural fragility by means of vector valued IMs reduces the complexity of record 
selection procedure based on seismic environment (i.e., magnitude, distance, site conditions, etc.). 

1( )aS T

 
 
5 CONCLUSIONS 
 
Alternative vector-valued IMs comprised of two ground motion parameters were used to present the 
ground motion potential. All the vectors considered here are based on  (spectral acceleration at 
the first mode period of vibration of the structure) as the first parameters. As the second parameter of 
the vector, the peak ground velocity (PGV) and spectral shape parameters 

1( )aS T

1 2,T TR  and pN  were 
considered. The sufficiency and efficiency of these IMs were studied for medial-story RC frame 
structures and vector-valued IM based fragility surfaces were developed.  
 
It is found that vector-valued IMs consisting of two parameters are more sufficient and efficient than 
scalar-valued IM . When 1)(aS T

1 2,T TR is used as the second parameter of the vector-valued IM, its 
sufficiency varies depending on the nonlinearity of the structure and the choice of . At low level of 
drift demand the structure stays linear, an optimal T2 near the second mode period of the structure for 

2T

1 2,T TR which can account for higher mode effect would be more efficient. For high level of drift demand, 
significant nonlinear behavior appears in the structure, and the fundamental period of the structure 
would be lengthened because of structural softening effect, so 1 2,T TR with T2 values lager than T1 would 
be more efficient. For this eleven-story structure, T2=1.5T1 is the best choice. It is also apparent that 
the impact of structural softening caused by nonlinearly on response is much more significant than 
higher mode effect. So 1 ,T TR

2  for T2=1.5T1 is appropriate as the second parameter of the vector to 
evaluate the fragility. Np  calculated with the period between 1.6s and 3.2s shows the most efficient 
parameter for a vector IM to evaluate the structural response, which indicates that spectra shape in a 
range of period larger than T1 is an important character of records for structural seismic demand 
analysis. And  shows less efficiency than, aPGV SR Np and 1 2

.4T T, 2( 2 )R T s . Fragility surfaces based on a 
vector-valued IM:  and  are developed. The main advantage of fragility surfaces is that the 
variability of structural fragility due to a second parameter  can be accounted for in contrast to 
when fragility curves are used.  

Np

Np
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