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SUMMARY:  

Fourier transform has been widely used in dynamic analysis so far. The stochastic ground motions can be 

generated by altering the Fourier phase in original ground motion. However, the time-frequency information is 

only obtained by wavelet transform. But usually, when the phase of a wavelet basis function is altered, the total 

power of real part is affected and thus the generation of artificial stochastic ground motions is not possible. In 

this context, we propose to use analytic signal hardy wavelet analysis that describes the time-frequency 

characteristics and allows consideration of phase uncertainty for generation of stochastic ground motions. This 

paper verifies the performance of presented scheme with numerical simulations showing more localized 

disturbance in generated artificial ground motions compared to the conventional scheme. It is also verified that 

the same transmitting function as in Fourier transform can be used for evaluating the response of a linear 

structural system.  
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1. INTRODUCTION 

 

The dynamic analysis of structures is essential for modern seismic design, such as performance-based 

design. Since the powerful computing environment is available these days, we are able to perform 

complicated numerical computations for seismic design and the importance of design input ground 

motion is emphasized.  

 

Fourier transform has been widely used in dynamic analysis. It analyses an input signal defining both 

phase and amplitude at various frequencies. It uses sinusoidal base function (e
iωt

) that has 

shift-invariance and orthogonal properties. The shift-invariance property assures the conservation of 

total power of the base function after the phase is altered, while the orthogonal property assures the 

unique decomposition and perfect reconstruction of signal. And because of these two properties, the 

generation of stochastic ground motions considering phase uncertainties is possible using Fourier 

transform.  

 

Fourier transform also has inconvenient property. Firstly, the temporal variation cannot be explained 

explicitly since the sinusoidal base function extends from -∞ to +∞ and the exact time cannot be 

estimated. When the behaviour of a non-linear system is discussed, the time-frequency information of 

the input signal is very important because once the non-linearity is reached during the vibration, the 

behavior of structure might be different after every cycle of loading and unloading depending upon the 

variation of natural frequency of structure with time. Secondly, the power is distributed throughout the 

time history of the generated ground motion and the desired localized disturbance is not possible.  

 

Recently, wavelet transform has been adopted for time-frequency analysis. In particular, orthogonal 

wavelet transforms are widely used since they allow inverse transforms and therefore are suitable for 

wave synthesis. Since the wavelet transform provides explicit time-frequency representation, concept 



 
 

of phase is not important for the sole purpose of temporal representation. Phase can be manifested in 

wavelet coefficients, but in usual cases, as the phase is altered, the total power of real part is also 

changed and thus the uncertainties in phase cannot be considered for the purpose of generation of 

stochastic ground motions.  

 

In this paper, we present an analytic signal hardy wavelet as a base function (as shown in Figures 1.1 

and 1.2). Since it is an analytic signal, the shift-invariance property is attained and hardy wavelet 

inherently has an orthogonal property. These properties in presented scheme enable the explicit 

definition of both `phase’ and `amplitude’ with the time-frequency representation. The analytic 

wavelet coefficients can be expressed into the phase and amplitude like the Fourier coefficients. Then 

the artificial ground motions can be generated by considering uncertainties in phase spectrum and also 

the localized disturbance can be achieved in the generated ground motion unlike in Fourier transform. 

 

This paper is organized as follows. The analytic signal is defined and the analytic wavelet transform is 

explained in section 2, signifying the importance of shift-invariance and orthogonal properties. It is 

highlighted that analytic Hardy wavelet signal enables phase localized in time-frequency domain in 

the same section. Section 3 explains the representation of phase uncertainty with the comparison 

among Fourier transform and analytic wavelet transform with numerical simulations. Section 4 shows 

the derivation of relation between Fourier coefficients of wavelet coefficients of an input signal and its 

response. The relation is also verified by the numerical simulations and the procedure is explained in 

the same section. Section 4 also highlights the convenience maintained in wavelet transform due to the 

conservation of transmitting function. Finally, section 5 concludes the paper.  

 

 

2. ANALYTIC WAVELET TRANSFORM 

 

In this paper, Wavelet transform that uses analytic Hardy wavelet signal as a base function, is 

proposed as a tool for localized time-frequency analysis that allows the consideration of uncertainties 

due to phase changes.  

 

2.1. Analytic Signal 
 

An analytic signal is a complex signal that has no negative frequency components. A real signal      
is converted into an analytic signal       by integrating twice its Fourier transform over the positive 

frequency range as 

 

       ∫           

 
 (2.1) 

 

so that the total power of real signal is maintained in the analytic signal. Here,      denotes discrete 

Fourier transform of a real signal. For discrete analysis,        where ∆   𝜋/𝑁∆   denotes 

interval of angular frequency,     0,1, , . . . . . .  𝑁 − 1  being the frequency index, while ∆  
denotes time interval, and, time     𝑛∆ , where 𝑛   0,1, , . . . . . .  𝑁 − 1  being the time index, and 

N being the total number of discrete data.   

 

2.2. Discrete Analytic Wavelet Transform 

 

Analytic Hardy wavelet is a complex function that has sinc function as its real and imaginary parts as 

shown in Figure 1.1. For numerical simulation, discretized analytic Hardy wavelet signal is 

reconstructed by inverse wavelet transform using the filter banks. In case of Fourier transform, the 

sinusoidal base function extends uniformly from -∞ to +∞ in time domain, but a wavelet function has 

its amplitude localized in certain time duration and rest of the period have almost zero amplitude. 

Figure 1.2 shows the same wavelet function in frequency domain and it has no negative frequency 

components since it is an analytic signal. This feature helps this tool to retain the shift-invariance 

property, i.e., the phase change doesn’t affect the total power of real part. It is also observed that the 



 
 

amplitude of the Hardy wavelet signal is bounded in a certain frequency range. It equipped the Hardy 

wavelet with an orthogonal property, i.e., the inner product of wavelet functions with different scale or 

shift generate zero. Orthogonality assures the unique decomposition of an original input signal and 

perfect reconstruction of the signal by inverse transform.  

 

The discrete analytic wavelet transform of the time series x(t) is given as 
 

 ̃  ,    ∑   𝑛      
     (

     

 
) (2.2) 

 
where s denotes scale and  denotes time-shift. It decomposes a time series signal into wavelet 

coefficients at different scales (or frequencies) and at various time-shifts as shown in Fig.2. And, the 

inverse wavelet transform is given as 
 

     ∑ ∑  ̃  ,       (
     

 
) (2.3) 

 

2.3. Phase and Amplitude localized in time-frequency domain 

 

In Fourier transform, phase and amplitude are defined in frequency domain. In case of wavelet 

transform, amplitude is defined in time-frequency domain but in usual cases phase is not explicitly 

defined and we cannot utilize the concept of phase uncertainty in ground motion simulation. So our 

aim is to present a tool that enables phase localized in time-frequency domain. As is shown above, an 

analytic Hardy wavelet function is able to define phase in wavelet function as: ∑       
  . The 

formulation is almost identical with that of Fourier transform and it also retains shift-invariance and 

orthogonal properties. Because of the localized property of wavelets, the localized disturbance is 

possible and ground motion simulation is more efficient compared to that by Fourier transform. It is 

observed in Section 3. 

 

In Fourier transform, the response of a linear structure can be evaluated conveniently by the product of 

input signal and transmitting function in frequency domain. Section 4 verifies that the convenience is 

maintained in wavelet analysis since the same transmitting function can be used for the evaluation of 

response in time-frequency domain. 
 

 
 
       

 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

Figure 1.1. Time history of an analytic Hardy 

wavelet signal 
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Figure 1.2. Fourier transform of analytic Hardy 

wavelet signal 



 
 

 
 

Figure 2. Discrete Analytic Hardy wavelet coefficients representing time-frequency characteristics of a time 

series signal. 

 

 

3. UNCERTAINTY IN PHASE 

  

A simple and powerful method for simulating ground motions is to combine parametric or functional 

descriptions of the ground motion’s amplitude spectrum with a random phase spectrum modified such 

that the motion is distributed over a duration related to the earthquake magnitude and to the distance 

from the source (Boore 2003). This is known as the stochastic method in which a number of stochastic 

ground motions are generated from the original ground motion by giving random phase perturbation 

and keeping the total power of signal constant. Phase is nothing but the relative position of signal and 

is expressed as an angle from 0 to 2π radian. The response of a structure is likely to be different to 

each of these generated stochastic ground motions. The random phase changes can represent the 

uncertainty of ground motion. The representation of phase uncertainty for simulation of input ground 

motion is discussed in this section with comparison among Fourier transform, usual wavelet transform 

and proposed analytic Hardy wavelet transform.  

 

3.1. Phase in Wavelet Transform 

 

When a real wavelet signal is used, the wavelet coefficient  ̃  ,    of Equations (2.2) or (2.3) has no 

phase. In analogy to the Fourier transform, it is possible to introduce phase θ in the form such as: 

| ̃  ,   |   . The definition of this phase is almost identical with the phase of Fourier transform and 

therefore it is expected that we can make use of conventional methods based on Fourier transform 

without significant difficulty. However, phase defined in this manner does not satisfy the property 

required for the manipulation of time series signal when real wavelet function is utilized. For example, 

if the phase value θ is changed to π/2, the real part disappears. It means that fluctuation of the phase 

can cause change in the total power of the signal and it is not suitable for our purpose of generating 

stochastic ground motions. 

 

We use a complex analytic Hardy wavelet signal that is accompanied by the imaginary part as shown 

in Figure 1.1. This analytic Hardy wavelet function defines phase, retains shift-invariance and 

orthogonal properties like in Fourier transform and thus it makes a tool that is suitable for our purpose.  
 

3.2. Numerical Simulations 

 

When a phase uncertainty ξ is introduced in the Fourier coefficient of a signal, the total power of real 

part is unchanged although the configuration of signal may be totally changed, which can be 

understood mathematically as follows: 

 

      ∑ | ̂     |                    
    (3.1) 

Magnitude 



 
 

 

where | ̂     |  denotes Fourier amplitude of      and   denotes Fourier phase. In case of 

wavelet transform, we can assume almost identical equation as 
 

      ∑ | ̃     | (
   

 
)         

    (3.2) 

 
The NS component of a strong ground motion data observed at Kobe observatory during the 1995 

Hyogoken Nanbu Earthquake is chosen for numerical simulation. The total number of Fourier 

coefficients is 2048 and out of them, around 200 coefficients are dominant that contribute to most of 

the total power. Then, 50 out of these 200 coefficients are chosen randomly to be disturbed by the 

phase noise ξ. The ξ value is fluctuated from 0 to π as represented in equation (3.1). Figure 3.1 shows 

the comparison of time series of original wave and the Fourier phase-disturbed wave.  

 

In the similar manner, we apply the perturbation to wavelet phase of the same input signal. The total 

number of analytic wavelet coefficients is 2048. Then, 40 out of around 200 dominant wavelet 

coefficients are chosen randomly and disturbed by the phase change uncertainties ξ varying from 0 to 

π as shown in equation (3.2). Figure 3.2 shows the comparison of time series of original wave and the 

wavelet phase-disturbed wave.  

 

In both cases of Figures 3.1 and 3.2, it is verified that the total power (root mean square) of the wave is 

unchanged after the phase disturbance. The normalized total power of original signal is 6397.2096 and 

it is 6397.1740 and 6397.2042 after Fourier phase changes and analytic wavelet phase changes 

respectively. It verifies that the shift-invariance property is retained in case of analytic Hardy wavelet 

analysis like in Fourier analysis.  

 

Let us compare the difference of the time history of the original and generated waves in Figures 3.1 

and 3.2. In case of Figure 3.1, the unwanted ripples appearing towards the latter part of time history 

implies that the power is distributed throughout the time history and disturbance is created throughout. 

On the other hand, the ripples can be hardly seen in those areas in case of wavelet function in Figure 

3.2. This is because the wavelet function is localized in time domain and the influence of the phase 

disturbance. This special feature allows us to consider the uncertainty in phase property without losing 

the time characteristics of the original wave. Since we want to focus mainly on dominant part of the 

ground motion and we do not want to reduce the severity in dominant part in the generated waves, this 

feature in wavelet case proves to be very useful.  

 

 
 
Figure 3.1. Comparison of time series of an original and reconstructed signal after the Fourier phase of 2 percent 

of the total or 25 percent of the dominant Fourier coefficients are contaminated by noise. 

Reconstructed wave is accompanied by the ripple which did not exist in the original signal. 
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Figure 3.2. Comparison of time series of the original and reconstructed signal after the phase of 2 percent of 

total or 20 percent of the dominant analytic Hardy wavelet coefficients are contaminated by noise. 

Reconstructed signal is more affected locally compared to the reconstructed signal in Figure 3.1. 

 
 

4. CONSERVATION OF TRANSMITTING FUNCTION 

 

The generation of artificial ground motions is followed by the computation of response of a structural 

system. Let us consider a linear structural system. The response is given as the convolution of impulse 

response function of the linear system and the input motion. It is well known that Fourier transform of 

the output response is given as the product of Fourier transform of impulse response function 

(transmitting function) and that of the input motion as shown in equation (4.5). It allows us to evaluate 

the response of the structural system easily and therefore very useful for practical purpose.  

 

In this paper, we show that similar relationship can be presented with wavelet coefficients and that the 

response of a linear structural system can be calculated from wavelet coefficients of input motion and 

the same transmitting function used in Fourier transform.  

 

4.1. Calculation of Response Using Wavelet Coefficients & Transmitting Function 

 

The analytical relation between response of a linear single degree of freedom system, the transmitting 

function and the input signal is determined as follows. Let us consider  

    : An input signal in time domain 

    : Response of linear system in time domain for the input signal       

    : Impulse response of the linear system in time domain 

 ̂    ,  ̂        ̂    : Discrete Fourier transform of      ,      and      respectively, where 

 ̂     is also known as a transmitting function, the ̂  sign representing discrete Fourier transform 

 ̃  ,    : Discrete Analytic Wavelet transform of     , the ̃  sign representing wavelet transform 

 ̂̃   ,    ,  ̂̃   ,    : Discrete Fourier transform of discrete wavelet transform of     ,     , 

respectively 

 

The discrete analytic wavelet transform of      is given by its convolution with analytic Hardy 

wavelet function and is represented as 

 

 ̃  ,     ∑   𝑛      
     (

     

  
) (4.1) 

 

Let us define the wavelet function corresponding to the j-th scale and n-th shift as 
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 , 

      (
     

  
) (4.2) 

 

The wavelet coefficients are distributed in time-scale (time-frequency) domain. It should be noted that 

the number of coefficients (𝑁   𝑗−1  is different at each scale   . So the discrete Fourier transform 

of discrete wavelet coefficients  ̃  ,     in terms of   is calculated separately for each scale and is 

represented as  

 

 ̂̃   ,      ̂      ̂ 
 , 

     (4.3) 

 

Similarly, the discrete analytic wavelet transform of response is represented as 

 

 ̂̃   ,      ̂      ̂ 
 , 

     (4.4) 

 

Utilizing the conventional relationship among  ̂    ,  ̂        ̂    : 
 

 ̂      ̂     ̂     (4.5) 

 

where     𝜋 /𝑁∆    denotes angular frequency,     0,1, , . . . . . .  𝑁 − 1  is the frequency 

index, 𝑗   1, ,3, . . . . . . , 𝑚  denotes scale index, 𝑁   𝑚   ∑ 𝑁 
𝑚
     represents total number of 

discrete time series data, 𝑁   𝑗−1 represents total number of coefficients at each scale index 𝑗, and, 

∆  denotes time interval.  
 
From Equations (4.4) and (4.5) we get 
 

 ̂̃   ,      ̂      ̂      ̂ 
 , 

     (4.6) 

 
From Equations (4.3) and (4.6), it leads to 

 

 ̂̃(  ,   )   ̂      ̂̃   ,     (4.7) 

 

This equation (4.7) shows that the discrete Fourier coefficients of discrete wavelet coefficients of 

response can be evaluated by the product of discrete Fourier coefficients of discrete wavelet 

coefficients of input signal and transmitting function of the structural system. During the computation, 

some constant terms might be introduced in this equation (4.7) depending upon the definition of 

Fourier transform of impulse response function, such as 

 

 ̂     
 

 
∑   𝑛                 

    (4.8) 

 

From equations (4.7) and (4.8) we get 

 

 ̂̃(  ,   )  𝑁    ̂      ̂̃   ,     (4.9) 

 

In order to reconstruct the signal from the coefficients of response obtained in equation (4.9) two steps 

are followed. Firstly, the inverse Fourier transform are taken separately for each scale: 

 

 ̃  ,     ∑  ̂̃(  ,  𝑗)
   
        𝑛    (4.10) 

 

Secondly, the inverse wavelet transform is applied to discrete wavelet coefficients obtained in 

equation (4.10) to obtain the response in time series: 
 

     ∑ ∑  ̃  ,  𝑗  𝑗   (
     

 𝑗
) (4.11) 



 
 

4.2. Numerical Simulation 

 

The relation in equation (4.9) is verified by the numerical computation by using strong motion record 

data as an input signal. We consider a single-degree-of-freedom system exposed to an earthquake 

motion. The mass and stiffness are set so that natural time period is given as tn = 1 second. Damping 

factor (ζ = 0.02) is also added. The strong motion record (NS component) obtained at the Kobe 

observatory in Kobe during the 1995 Hyogoken Nanbu Earthquake is used as an input signal. The 

same input signal is used for numerical simulation in section 3 and is shown as original signal in 

Figures 3.1 or Figure 3.2. Impulse response of the linear single degree of freedom system to the input 

signal is calculated in time-domain by Newmark-β method. Both the input signal and impulse 

response are converted into analytic signals, following the definition of analytic signal in equation 

(2.1). Then the response of structure is obtained by following the procedure explained in section 4.1.  

 

As a reference, the response of the linear structural system is also obtained by using time domain 

Newmark-β method. Time histories of the response evaluated from wavelet transform and the one 

obtained by time integration are compared in Figure 4. The two time histories show good agreement 

with each other, which verifies the relation obtained in equation (4.9). 
 

  
 

Figure 4. Comparison of time histories of responses of a linear system calculated by the presented wavelet 

scheme and the time-integration scheme. They show a very good agreement. 

 

 

5. CONCLUSIONS 

 

The representation of uncertainties is important for dynamic analysis of structures and synthesis of 

design input ground motion. A number of uncertain stochastic ground motions can be generated by 

disturbing the Fourier phase spectrum randomly and maintaining the frequency characteristics and 

total power of an original ground motion. In short, Fourier transform considers the temporal change in 

ground motion characteristics by using the concept of ‘phase’. However, the Fourier phase changes 

disturb the time-frequency characteristics and localized disturbances at desired time intervals are not 

possible. For consideration of localized time-frequency characteristics, wavelet analysis is more 

widely accepted. But unlike in Fourier phase, usually we cannot utilize various conventional 

methodologies to generate artificial uncertain ground motions considering the wavelet phase. 

Considering such problems, this paper proposes a scheme to use discrete wavelet transform using 

analytic Hardy wavelet function. This tool enables phase localized in time-frequency domain by 

retaining shift-invariance and orthogonal properties like in Fourier analysis and allows performing 

ground motion simulation considering uncertainties in wavelet phase. Thus the presented scheme 

incorporates the advantages of both Fourier and wavelet transform by expressing the signal using the 

phase and amplitude in the similar manner as in Fourier transform and representing localized 
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time-frequency characteristics of a signal as in wavelet transform. Numerical simulation shows that 

the presented scheme is not only able to generate ground motions with noise in phase but also able to 

produce localized disturbance in time history of the synthesized signal. Also it is verified with the 

numerical simulation that the dynamic response of a linear structural system can be evaluated by 

wavelet transform method using the same transmitting function defined by Fourier transform. 
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