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SUMMARY: 
In this paper, dynamic behavior of buildings allowed to uplift at mid-story is investigated. The system 
considered is a two dimensional uniform shear-beam model allowed to uplift at mid-story. On account of 
piece-wise linear characteristics, classical modal analysis is applied to evaluate dynamic behavior during uplift. 
At first, the equations of motion are derived and eigenproblem is solved. Their free-vibrational responses under 
gravity are analyzed during the first excursion of uplift following to the first mode vibration in contact phase. 
Parameters are height/width ratio of whole buildings, height ratio of mid-story uplift system and intensity of 
vibration. The results show reduction effect due to uplift at mid-story with modal contributions to responses. 
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1. INTRODUCTION 
 
It has been pointed out that buildings during strong earthquakes have been subjected to foundation 
uplift (Rutenberg et al. 1982, Hayashi et al. 1999). Some studies dealing with foundation uplift in 
flexible systems have already been conducted (e.g. Muto et al. 1960, Meek 1975, 1978, Psycharis 
1983, Yim et al. 1985). The authors also studied experimentally and analytically from the point of 
view of utilizing transient uplift motion for reduction of seismic-force response (e.g. Ishihara et al. 
2006a, 2006b, 2007, 2008, 2010, Azuhata et al. 2008, 2009, Midorikawa et al. 2006, 2010). 
 
Structures allowed to uplift are sometimes called as “stepping”, and can be recognized as a kind of 
base isolated structures. Depending on building plans, etc., mid-story isolated system is sometimes 
more suitable to apply rather than base isolated system for some buildings. By analogy, structural 
systems allowed to uplift at mid-story may be useful and efficient for reduction of seismic damage of 
multi-story buildings. 
 
In this paper, dynamic behavior of buildings allowed to uplift at mid-story is investigated. On account 
of piece-wise linear characteristics, classical modal analysis is applied to evaluate dynamic behavior 
during uplift. 
 
 
2. SYSTEM CONSIDERED AND EIGENVALUE ANALYSIS 
 
2.1. System considered 
 
The system considered is a two dimensional uniform shear-beam model allowed to uplift at mid-story 
as shown in Fig. 2.1 with typical segments of infinitesimal height dx located at the distance x from the 
base and xu from the top. Only the upper part of the system is allowed to uplift. Both parts have the 
same density and stiffness. The base of the system is fixed to the rigid ground. The lower and upper 
parts of the system are connected each other at height Hl from the base to have the same horizontal 



displacement. So, no deformation and slippage is allowed between the top of the lower part and the 
bottom of the upper part. It is assumed that the section is rigid and that displacement is small enough 
not to need to consider the so-called P–Δ effect. Generally speaking, an ordinary multi-story building 
does not have the constant story shear stiffness through the height. In slender buildings, deformations 
due to columns’ shortening/elongation should be often considered. Nevertheless we adopt the uniform 
shear-beam model to make the mathematical expressions of motions as simple as possible and to 
reduce the number of structural parameters. 
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(a)Whole model    (b) Portion of infinitesimal height dx 

 
Figure 2.1. Mathematical model 

 
2.2. Equation of motion and eigenvalue analysis 
 
Equations of motion of the segment (see Fig. 2.1(b)) for free vibration during uplift are as follows: 
 
 Horizontal:  Adx y Q dx    (2.1) 

 Rotational:  2( 3)u u uAdx B m dx Qdx      (2.2) 
 
where ρA is the mass per unit height, y = y(x, t) is horizontal displacement, ( , ) ( , )Q Q x t rs x t   is 
shear force, r is shear stiffness(r>0), s = s(x, t) is horizontal displacement due to shear deformation 
defined as Eqn. 2.3 and 2.4, θ(t) is rotational angle of the section of the upper part, B is width, m is 
bending moment. The dots and primes signify differentiation with respect to time t and coordinate x 
(or xu in the upper part). Eqn. 2.1 is used for both the upper (x is replaced by xu) and the lower parts. 
Eqn. 2.2 is used only for the upper part. 
 
 Upper:  ( , ) ( , ) (0, ) ( )u u u u u us x t y x t y t x t    (2.3) 

 Lower:  ( , ) ( , )l ls x t y x t  (2.4) 
 
where the subscripts u and l mean the upper and the lower part respectively. 
 
When the system is vibrating in one of its natural modes, the horizontal displacements and rotational 
angle may be taken in the form ( , ) ( ) ( )u u u uy x t Y x q t , ( , ) ( ) ( )l ly x t Y x q t  and ( ) ( )t q t   , where 
q(t) is generalized coordinate. Let us denote the circular frequency by . For free vibration, 2q q  . 
Considering the boundary conditions (0, ) 0uQ t   at the top of the upper part and (0, ) 0ly t   at the 
bottom of the lower part, the mode shapes (eigenvectors) Yu(xu) and Yl(x) are defined as 
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where H A r    is dimensionless frequency, H is the total height of the whole system, Du and 

Dl are constants. Considering the boundary condition between the upper and the lower parts at height 
Hl for equilibrium of horizontal force and having the same horizontal displacement with the equation 
integrating Eqn. 2.2 over the height of the upper part Hu, we can obtain three equations for Du, Dl and 
. Let us denote the determinant of these three equations as det A. The frequency equation is 
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where u  is defined as ( )u uH H  , l  is ( )l lH H  . We can get the dimensionless natural 

frequency   from Eqn. 2.7. 
 
Fig. 2.2 shows examples of mode shapes for an uplifting phase. The first mode is rigid mode with zero 
frequency where the upper part rotates as a rigid block. The fifth mode’s shape and frequency is nearly 
equal to those of the fourth mode for contact phase. 

 

(a) 1st      (b) 2nd      (c) 3rd      (d) 4th      (e) 5th 
 

Figure 2.2. Mode shape for an uplifting phase (H/B=4, Hl/H=0.4) 
 
 
3. INITIAL VELOCITY ANALYSIS 
 
To grasp the fundamental characteristics of dynamic behavior of rocking motion accompanied by 
uplift, initial velocity analysis is carried out utilizing the modal equations. Suppose that the system 
initially at rest is subjected to the impulsive horizontal forces having the same distribution shape along 
the whole height as that of the first mode in contact phase (i.e. fixed condition). The system begins to 
vibrate only in the first mode. If the system oscillates enough, the upper part of the structure begins to 
rock accompanied by uplift motion when the overturning moment reaches the resisting moment due to 
its self-weight, MugB/2, where Mu is the total mass of the upper part and g is gravitational acceleration. 
The analysis is conducted between the instant of initiation of uplift and that of landing, that is, the first 
excursion or half cycle of uplifting behavior. As a basic study, ground motions and damping of the 
system are neglected. 
 
Parameters of the system are the height/width ratio of whole system H/B and the height ratio of 
mid-story uplift system Hl/H. The first natural frequency in contact phase (or shear wave velocity) is 
included in dimensionless formulation of equation of motion. Parameter for the intensity of oscillation 
is represented by the maximum base shear coefficient CBf where the system is not allowed to uplift. 
Only 3 kinds of parameters, H/B, Hl/H and CBf, are used in this study. 
 



3.1. Critical base shear coefficient at the initiation of uplift 
 
Base shear coefficient at the initiation of uplift for mid-story uplift system CBf1,cr can be expressed as  
 
 1, 1, 0Bf cr Bf crC F C   (3.1) 
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where CBf1,cr0 is the corresponding base shear coefficient for system allowed to uplift at the base (i.e. 
Hl=0).  
 
Fig. 3.1 shows the function F in Eqn. 3.2. For example, F=1.16 for Hl/H=0.2 and F=1.46 for Hl/H=0.4. 
Mid-story uplift system is not so easy to uplift compared to base uplift system. 
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Figure 3.1. F in Eqn.3.2 
 
3.2. Equation of motion 
 
At first, let us introduce the dimensionless time  and dimensionless pseudo acceleration a (Meek 
1978) as follows: 
 
 1f t   (3.4) 

 2
1fa g    (3.5) 

 
where f1 is the first natural circular frequency in contact phase (or fixed condition not allowed to 
uplift) and  is an arbitrary displacement. 
 
We can express the horizontal displacements and rotation by superimposing the modal responses, i.e. 

u uj jy Y q , l lj jy Y q  and j jq   ,where subscript j means jth mode. Substituting these 

equations into Eqns. 2.1 and 2.2, adding the effect of gravity 2uAdx g B   (provided >0) to the 
right-hand side of Eqn. 2.2, and integrating and adding the Eqns. 2.1 and 2.2, considering the 
orthogonal property of the modes, the dimensionless equation of motion for mode j for an uplift phase 
can be derived as, 
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where 2
0 1 0yu j f u ja y g , 0u j uj jy D q  is the horizontal displacement at the top of the jth mode, 



1 1f f H A r   , ( )( 2)j u jSv H H MB  , M AH  is the total mass of the whole system, 

jM  is the generalized mass of the jth mode. Note that the values of right-hand side of Eqn. 3.6 are 

independent of how the mode is normalized. The analytical solution of Eqn. 3.6 can be found easily. 
 
For the representation of the results in the next section, we assume 0t    at the instant of initiation 
of uplift and 0   after lift-off. Initial conditions of modes for an uplift phase can be derived using 
the orthogonal properties of modes with (0) 0   and 0( ) 0d d     . Up to 10 modes are used to 
calculate the responses. 
 
3.3. Time histories and modal contributions 
 
Fig. 3.2 shows examples of time histories of responses during the first uplifting excursion with the 
modal contributions. Thick lines show the responses calculated by the sum of modal responses up to 
10 modes, and thin lines show modal contributions from the first to the fourth modes. The dotted lines 
show the corresponding response with fixed condition (i.e. not allowed to uplift). In the case of the 
figs., we assume H/B=4, Hl/H=0.4 and CBf =0.8. In this case, the duration of the first uplifting phase is 
=4.8 in the dimensionless time. 
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(a) Horizontal disp. yu0 at the top      (b) Horizontal disp. (x/H=0.4) 
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(c)Base shear coefficient           (d) Story shear coefficient (x/H=0.6) 

 
Figure 3.2. Time histories and modal contributions (H/B=4, Hl/H=0.4, CBf=0.8) 

 
Horizontal displacement at the top (Fig.3.2(a)) is mainly dominated by the first mode and larger than 
that of fixed condition. On the other hand, horizontal displacement at x/H=0.4 (Fig.3.2(b)), where the 
uplift allowed, is dominated by the second mode. 
 
In Figs. 3.2(c) and (d), the first mode contribution is zero because the story shear is calculated from 
the deformation of the structure and the first mode is rigid mode (see Fig.2.2(a)). Base shear 
coefficient (Fig.3.2(c)) is dominated by the second mode and slightly less than that of fixed condition. 
Force reduction effect due to uplift is not so large for base shear. Fig.3.2(d) shows the story shear 
coefficient in the upper part at x/H=0.6 (xu/H=1-x/H=0.4). The story shear is affected by higher modes 
including the third and fourth modes. The maximum story shear coefficient is much smaller than that 
of fixed condition. 



 
3.4. Maximum story shear coefficient along the height 
 
Fig. 3.3 shows the maximum story shear coefficient along the height. The ordinate of the graphs is 
dimensionless height x/H and the abscissa is the maximum story shear coefficient C. The dotted lines 
show the corresponding results under fixed condition vibrating only in its first mode. 
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(a) Effect of Hl/H (H/B=4, CBf=0.8)       (b) Effect of H/B (Hl/H =0.4, CBf=0.8) 
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 (c) Effect of CBf (H/B=4, Hl/H =0.4)  

 
Figure 3.3. Maximum story shear coefficient along the height 

 
Fig. 3.3(a) compares the effect of the height ratio of mid-story uplift system, Hl/H. In the region about 
x/H<0.5, the story shear coefficients are increased with increase of the height ratio Hl/H, whereas those 
in x/H>0.5 are decreased. 
 
Fig. 3.3(b) compares the effect of the height/width ratio H/B. The story shear coefficients are 
decreased with increase of H/B except the region near the top. In the case of H/B=6, the distribution of 
story shear coefficients along the height has a sharply bent shape. 
 
Fig. 3.3(c) compares the effect of intensity of vibration represented by CBf. The force reduction effect 
due to uplift cannot be seen enough near the base and the top. The minimum story shear coefficient 
along the height appears in the region around x/H=0.6, which is a little bit higher region than 
mid-story uplift system installed at Hl/H=0.4. 
 
 
4. CONCLUSIONS 
 
In this paper, dynamic uplifting behavior of buildings allowed to uplift at mid-story is investigated by 
means of classical modal analysis. Uniform shear-beam model is used as a representation of 
multi-story buildings allowed to uplift. The dynamic behavior during an uplift excursion is clarified by 
conducting the initial velocity analysis as the sum of modal responses to be able to calculate 
analytically. From the results, the conclusions are summarized as follows:  



(1) Horizontal displacements in the upper part of buildings are dominated mainly by the first (rigid 
body) mode, whereas those in the lower part are affected higher modes. 
(2) Story shears are reduced compared to those without uplift, especially in the upper part. 
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