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SUMMARY 

Catastrophe risk modeling usually deals with the derivation of the probability distribution of the damage to a 

portfolio of assets due to a given hazard, where damage represents the cost to restore the assets to their pre-damaged 

condition. In the case of a single peril, such as earthquake ground shaking, the estimation of the damage to an asset 

comes down to the modeling of its vulnerability - that is, the level of the damage given the intensity of the ground 

shaking.  But there are cases when a single event can cause multi-peril damage to the assets. For example, 

earthquake ground shaking, fire following and tsunami, hurricane wind and flooding, tornado wind and hail, etc. In 

such cases, the definition of the damage as the cost to restore the asset to its pre-damaged condition still holds, 

except the cost should include the total cost required to restore the damage from all perils without double counting. 

Double counting refers to the overlap of the estimation of damage from multiple perils, e.g. fire damage to a 

building that has been already destroyed due to earthquake ground shaking. The latter is known as the problem of 

"burnt rubble". This paper presents an approach for modeling the combined damage from multiple perils without 

double counting. The developed framework derives the mean and the full probability distribution function of the 

combined damage for multiple perils. Consideration is given to cases where damage from one peril could impact the 

vulnerability of the asset to subsequent perils. 
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1. INTRODUCTION 

 

Earthquake ground shaking and fire following can be devastating. Problem of burning the rubble arises in 

catastrophe modeling when each peril is modeled and analyzed independently. One way of doing this 

would be to modify the portfolio to account for the damage of the primary peril, e.g. shaking, and then 

analyzing the modified portfolio for the second peril, e.g. fire, where the modified portfolio will have the 

reduced replacement values accounting for the damage sustained from the primary peril. In most cases, 

this approach is not practical as it is cumbersome to implement, and because the user may not always 

have access to the tools used for modeling and simulating the losses for each peril individually. 

 

It is with the above consideration that we present a methodology in this paper that would allow the user to 

combine the results from the analysis of the individual perils without any need of reanalyzing them. At 

the same time, the presented methodology accounts for the effect of the ‘burnt rubble’ and avoids double 

counting. 

 

 

2.  DAMAGE, DAMAGE RATIO AND VULNERABILITY 

 

Risk analysis usually deals with the derivation of the probability distribution of the damage to a given 

asset or to portfolio of assets. Where damage represents the monetary payout required to restore the asset 

to its pre-damaged condition. We denote the random variable representing the damage by   and its 



probability distribution by      , where              is the probability that the damage,  , is less 

than or equal to the given value, d. The details of the derivation of      , is out of the scope of this study. 

 

If the total replacement value of the asset A is the constant   , then the damage can be expressed as 

 

       (2.1) 

 

where r is the damage ratio. Note that there is a one-to-one mapping between the damage, d, and damage 

ratio, r, therefore the probability distribution of the damage ratio, r, can be written as  

 

               (2.2) 

 

The damage incurred by an asset during a catastrophe event depends on the hazard intensity and asset 

fragility function. The hazard intensity can be measured and represented by a vector of hazard parameters, 

 , and the fragility function,     |  . The latter is the conditional probability distribution of the damage 

ratio, r, for a given hazard, z.  

 

The most commonly used form for defining the damageability of an asset is the vulnerability function 

which provides the mean damage ratio for a given level of hazard, z. 

 

        |   (2.3) 

 

 

3. COMBINING DAMAGES FROM MULTIPLE PERILS 

 

As it was discussed in the previous section in the case of a single peril, e.g. damage due to earthquake 

ground shaking, the primary objective is the derivation of the probability distribution      , where D 

represents the cost required to restore the asset to its pre-damaged condition. 

 

However, there are cases when a single event can cause multi-peril damage to the given asset. For 

example, earthquake ground shaking and fire following, hurricane wind and flooding, tornado wind and 

hail, etc. In such cases, the definition of the damage to the asset as the total cost required to restore the 

asset to its pre-damaged condition still holds, except the damage in this case represents the total combined 

damage, caused by all individual perils, without double counting. 

 

In order to calculate the combined damage from all perils we apply each peril to the asset A individually, 

in consecutive order. The subsequent perils are applied to the residual replacement value of the asset A 

only. This will guarantee that we do not double count for the same damage to asset A from multiple perils.  

 

The damage ratio for the k-th peril can be expressed in the following form 

 

  |          
  

   ∑   
   
   

 (3.1) 

 

where   |          is the conditional damage ratio, given the damages due to the previous perils and is a 

function of the damage from prior perils. 

 

In general, the damage caused by a particular peril could depend on the damage caused by other perils, 

e.g. the level of flood damage due to rain would depend on the level of roof damage due to wind. 

Therefore, the combined damage depends on the order the particular perils impact asset A. 



Figure 1 illustrates a simple example of the application of two perils, 1 and 2, in consecutive order. The 

damage from peril 1, can be expressed in terms of the replacement value,   , and the damage ratio,   , as 

defined in (2.1).  

 

         (3.2) 

 

and, using (3.1), the damage from the second peril, can be written in the following form 

 

              |  (3.3) 

 

where                is the residual replacement value after the damage caused by peril 1. This 

residual replacement value is equivalent to the shaded area in Figure 1.  Note that since    is the damage 

incurred only by the residual replacement value of asset A,    and    are disjoint sets. 

 

The damage due to the subsequent k-th peril can be expressed as 
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Figure 1. Venn diagrams for peril 1 and 2. 

 

And the total combined damage from all m perils is,  

 

     ∑   

 

   

 (   ∑   |         

 

   

 ∏(     |         )

   

   

)     (3.5) 

 

In the above equation and hereafter the square bracketed indices, [m], indicate the combination of all the 

perils from 1 to m. 
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Note that (3.5) can be written in the form of (3.2)  

 

             (3.6) 

where 
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 (3.7) 

 

is the combined damage ratio from all m perils. 

 

Assuming that the damage caused by one peril has no impact on the vulnerability of the asset to the 

subsequent perils, that is  

 

  |             (3.8) 

 

the combined damage ratio, given in (3.7), will simplify to 

 

       ∏      

 

   

 (3.9) 

 

For the most common case, when m  , (3.7) and (3.9) simplify to 

 

          |       |  (3.10) 

 

and  

 

                 (3.11) 

 

respectively. 

 

Note that (3.9) and (3.11) are true if and only if the damage due to one peril has no impact on the 

vulnerability of the asset due to the other perils. 

 

 

4. MEAN AND VARINACE OF THE COMBINED DAMAGE RATIO 

 

Since the combined damage and combined damage ratio are functions of random variables, namely, 

functions of the damage and damage ratio of the individual perils, using principals of probability theory, 

one can derive the probability distributions of the combined damage and damage ratio. However, in most 

cases in practice the evaluation of the mean and the variance of the combined damage or the combined 

damage ratio will suffice.  

 

Based on Ang et al. (1984), Augusti et al. (1984) it can be shown that using series expansion of the 

definition of the combined damage ratio in (3.7), and retaining only the linear elements, one can obtain 

the first order approximation of the mean and the variance of the combined damage ratio due to the m 

perils as  
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 (4.3) 

 

In the above equation,             is the gradient of the vector of damage ratios r, evaluated at the mean 

point      , and     |          represents the mean damage ratio due to the k-th peril given the damage 

ratio of the prior     perils, and .      is the covariance matrix of the damage ratios. 

 

4.1 Shake and Fire Following Earthquake 

 

First we note that the probability that a building will self-ignite is at least an order of magnitude smaller 

than that of it burning down due to fire spread that has started in some other building in the neighborhood. 

This is the main reason why the fire following earthquake losses are most often observed in dense urban 

areas.  

 

Given the above observation it is safe to assume that the events of shake damage and fire following 

damage for a given building are statistically independent.  

 

      |             (4.4) 

 

That is, we are assuming that the effect of shake damage on the vulnerability of the building to fire hazard 

is negligible.  

 

Note that although we have assumed that the fire vulnerability of the building is indifferent to its 

sustained shake damage, the losses due to shake and fire can still be statistically correlated. We will 

denote the correlation between the shake and fire losses by  . 

 

Given that we have analyzed the building for shake and fire following earthquake and obtained the 

respective means and variances of the damage ratios,          ,              and         ,            , 

respectively, then the first order approximation of the mean combined damage ratio is, 

 



                                              

                                       
 

(4.5) 

 

and the first order approximation of the variance of the combined damage ratio is 

 

                                
                            

               

                                                                                         
 
             

 
  

(4.6) 

 

where      and        can be derived from (4.1) and(4.3), respectively. We note the following limits for 

the mean and variance of the combined damage ratio 
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and 
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as well as 
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and 
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In the above limits we have made use of the following lemma.  

 

Lemma: If the random variable X is defined in the interval ⌊   ⌋, then  

 

   
      

         and    
      

         (4.11) 

 

where      is the mean of the random variable X.  

 

Proof:   By definition  

 

     ∫           

 

 

 (4.12) 

 

Therefore        or        if and only if              or             , respectively. 

Where      is the Direc delta function. That is when the entire probability mass is concentrated at the 

respective end of the given interval.  Hence, if        , then 
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 (4.13) 



 

It is easy to see that similar result can be obtained for       . 

 

 

5. APPLICATION IN CATASTROPHE MODELING – AN EXAMPLE 

 

Catastrophe modeling is the process of using computer-assisted calculations to estimate the monetary 

damage that could be sustained by an asset or portfolio of assets due to a catastrophic event such as 

earthquake.  Most available catastrophe models are based on catalogs of hypothetical events (e.g. 

earthquakes) that have the potential to cause damage to a given asset or a portfolio of assets under 

consideration.  Most common output of the analysis is the report of the losses of individual assets or a 

combination thereof (policy, zip code, county, etc) due to a given peril (e.g. earthquake ground shaking, 

fire following earthquake, etc.) for the events in the above mentioned hypothetical events catalog. 

 

As an illustration of the presented methodology we have randomly simulated shake and fire losses for 30 

sites, which are located in three zip codes and two counties. 

 
Table 5.1 Event Loss,($), Table for Damage due to Ground Shaking. 

Site zip Value 
Mean Loss Loss Ratio Loss Standard Deviation 

Event 1 Event 2 Event 3 Event 1 Event 2 Event 3 Event 1 Event 2 Event 3 

1 1 59 27.9 33.7 27.4 0.47 0.57 0.46 42.5 45.1 43.8 

2 1 335 73.7 284.2 9.8 0.22 0.85 0.03 66.0 288.6 14.3 

3 1 85 25.6 78.1 36.4 0.30 0.92 0.43 28.6 28.9 20.9 

4 1 326 302.4 178.4 288.7 0.93 0.55 0.89 77.3 64.2 139.6 

5 1 268 96.3 21.7 77.4 0.36 0.08 0.29 100.2 7.1 95.5 

6 1 219 110.7 205.1 95.0 0.51 0.94 0.43 26.0 96.9 39.0 

7 1 117 18.5 44.6 87.5 0.16 0.38 0.75 11.6 28.4 50.1 

8 1 191 190.7 173.5 111.8 1.00 0.91 0.59 12.8 132.7 170.5 

9 1 196 118.2 105.2 101.5 0.60 0.54 0.52 113.2 84.7 22.8 

10 2 336 160.7 313.6 297.5 0.48 0.93 0.89 124.9 144.2 190.0 

11 2 67 37.5 40.7 58.5 0.56 0.61 0.87 54.9 9.4 75.7 

12 2 200 117.2 20.1 167.1 0.59 0.10 0.84 187.3 18.3 145.6 

13 2 314 72.6 237.5 162.2 0.23 0.76 0.52 103.6 70.5 180.9 

14 2 241 72.4 118.3 43.8 0.30 0.49 0.18 65.9 161.7 60.4 

15 2 179 123.6 64.7 40.1 0.69 0.36 0.22 144.3 108.4 31.7 

16 2 215 80.9 84.2 197.4 0.38 0.39 0.92 98.9 83.2 227.5 

17 2 115 9.0 22.6 49.7 0.08 0.20 0.43 9.5 36.6 16.5 

18 2 245 222.2 152.2 175.2 0.91 0.62 0.72 228.8 232.9 270.3 

19 2 414 112.2 405.2 43.7 0.27 0.98 0.11 163.0 270.2 73.7 

20 2 436 362.3 69.0 329.4 0.83 0.16 0.76 390.3 47.9 176.5 

21 2 161 151.7 42.8 136.5 0.94 0.27 0.85 33.6 58.5 87.2 

22 2 165 80.8 94.5 69.5 0.49 0.57 0.42 101.1 143.6 115.5 

23 2 133 110.4 40.8 47.2 0.83 0.31 0.36 71.5 48.6 20.3 

24 2 433 130.6 314.6 18.9 0.30 0.73 0.04 208.1 414.7 11.9 

25 3 449 11.0 339.5 229.8 0.02 0.76 0.51 11.5 401.7 74.6 

26 3 115 110.6 42.6 10.5 0.96 0.37 0.09 18.9 52.4 9.5 

27 3 185 98.0 71.8 27.9 0.53 0.39 0.15 29.4 77.7 31.0 

28 3 363 174.2 133.8 318.8 0.48 0.37 0.88 152.0 209.8 376.8 

29 3 299 231.2 84.5 97.7 0.77 0.28 0.33 98.6 118.6 67.9 

30 3 423 165.3 174.6 322.0 0.39 0.41 0.76 128.4 190.2 377.7 

Totals 7,284 3,598 3,992 3,679 

       



Table 5.2 Event Loss Table for Damage due to Fire Following Earthquake. 

Site zip Values 
Mean Loss Loss Ratio Loss Standard Deviation 

Event 1 Event 2 Event 3 Event 1 Event 2 Event 3 Event 1 Event 2 Event 3 

1 1 59 16.2 32.9 - 0.27 0.56 - 7.8 14.4 - 

2 1 335 280.7 256.7 236.6 0.84 0.77 0.71 130.5 504.7 349.0 

3 1 85 - 20.9 - - 0.25 - - 41.2 - 

4 1 326 - - 91.4 - - 0.28 - - 146.8 

5 1 268 79.9 - - 0.30 - - 112.5 - - 

6 1 219 - 138.7 - - 0.63 - - 155.4 - 

7 1 117 - - - - - - - - - 

8 1 191 160.8 164.6 87.3 0.84 0.86 0.46 218.4 255.8 166.1 

9 1 196 89.8 - - 0.46 - - 86.6 - - 

10 2 336 - - 298.4 - - 0.89 - - 211.7 

11 2 67 - - 10.8 - - 0.16 - - 17.3 

12 2 200 149.6 - - 0.75 - - 288.8 - - 

13 2 314 - - 120.0 - - 0.38 - - 205.6 

14 2 241 - - 120.5 - - 0.50 - - 177.8 

15 2 179 - - 9.7 - - 0.05 - - 13.8 

16 2 215 - 3.1 - - 0.01 - - 2.7 - 

17 2 115 - 108.4 39.3 - 0.94 0.34 - 29.8 57.6 

18 2 245 45.1 - - 0.18 - - 29.7 - - 

19 2 414 207.0 - 348.6 0.50 - 0.84 293.9 - 297.7 

20 2 436 - 296.7 334.1 - 0.68 0.77 - 540.2 409.1 

21 2 161 - 5.9 - - 0.04 - - 15.7 - 

22 2 165 - 41.4 - - 0.25 - - 74.2 - 

23 2 133 - - 76.7 - - 0.58 - - 67.1 

24 2 433 328.9 - 291.0 0.76 - 0.67 198.8 - 630.0 

25 3 449 390.4 234.4 69.8 0.87 0.52 0.16 702.2 344.7 70.1 

26 3 115 69.9 - 24.2 0.61 - 0.21 155.4 - 58.6 

27 3 185 4.8 - - 0.03 - - 9.8 - - 

28 3 363 - 69.6 195.3 - 0.19 0.54 - 48.6 175.8 

29 3 299 253.7 - - 0.85 - - 239.6 - - 

30 3 423 - 26.0 399.0 - 0.06 0.94 - 45.1 431.1 

Totals: 7,284 2,077 1,399 2,752 

       

Using (4.5) and (4.6) the combined losses for ground shaking and fire following without double counting 

for the effect of the “burnt rubble” for all 30 sites are listed in Table 5.3, below. For this example, we 

have assumed the correlation between the losses due to ground shake and fire following earthquake to be 

0.5.  

 
Table 5.3 Event Loss Table for Combined Damage due to Ground Shaking and Fire Following Earthquake. 

Site zip TIV 
Mean Loss Loss Ratio Loss Standard Deviation 

Event 1 Event 2 Event 3 Event 1 Event 2 Event 3 Event 1 Event 2 Event 3 

1 1 59 36.4 47.8 27.4 0.62 0.81 0.46 31.1 20.9 43.8 

2 1 335 292.6 323.1 239.4 0.87 0.96 0.71 102.4 102.0 338.8 

3 1 85 25.6 79.8 36.4 0.30 0.94 0.43 28.6 22.1 20.9 

4 1 326 302.4 178.4 299.2 0.93 0.55 0.92 77.3 64.2 101.9 

5 1 268 147.5 21.7 77.4 0.55 0.08 0.29 100.7 7.1 95.5 

6 1 219 110.7 213.9 95.0 0.51 0.98 0.43 26.0 36.9 39.0 

7 1 117 18.5 44.6 87.5 0.16 0.38 0.75 11.6 28.4 50.1 

8 1 191 191.0 188.6 148.0 1.00 0.99 0.77 2.0 29.7 115.4 

9 1 196 153.8 105.2 101.5 0.78 0.54 0.52 70.3 84.7 22.8 



10 2 336 160.7 313.6 331.7 0.48 0.93 0.99 124.9 144.2 32.2 

11 2 67 37.5 40.7 59.9 0.56 0.61 0.89 54.9 9.4 63.6 

12 2 200 179.1 20.1 167.1 0.90 0.10 0.84 128.5 18.3 145.6 

13 2 314 72.6 237.5 220.2 0.23 0.76 0.70 103.6 70.5 149.6 

14 2 241 72.4 118.3 142.4 0.30 0.49 0.59 65.9 161.7 148.6 

15 2 179 123.6 64.7 47.7 0.69 0.36 0.27 144.3 108.4 31.9 

16 2 215 80.9 86.0 197.4 0.38 0.40 0.92 98.9 82.0 227.5 

17 2 115 9.0 109.7 72.1 0.08 0.95 0.63 9.5 24.0 34.5 

18 2 245 226.4 152.2 175.2 0.92 0.62 0.72 186.7 232.9 270.3 

19 2 414 263.1 405.2 355.5 0.64 0.98 0.86 229.2 270.2 266.6 

20 2 436 362.3 318.8 411.1 0.83 0.73 0.94 390.3 455.0 108.2 

21 2 161 151.7 47.1 136.5 0.94 0.29 0.85 33.6 57.6 87.2 

22 2 165 80.8 112.2 69.5 0.49 0.68 0.42 101.1 112.2 115.5 

23 2 133 110.4 40.8 96.7 0.83 0.31 0.73 71.5 48.6 44.1 

24 2 433 360.3 314.6 297.2 0.83 0.73 0.69 147.6 414.7 602.5 

25 3 449 391.8 396.7 263.9 0.87 0.88 0.59 685.0 209.6 71.7 

26 3 115 113.3 42.6 32.5 0.99 0.37 0.28 9.5 52.4 53.8 

27 3 185 100.2 71.8 27.9 0.54 0.39 0.15 29.0 77.7 31.0 

28 3 363 174.2 177.8 342.6 0.48 0.49 0.94 152.0 172.3 175.4 

29 3 299 288.7 84.5 97.7 0.97 0.28 0.33 56.4 118.6 67.9 

30 3 423 165.3 189.8 417.3 0.39 0.45 0.99 128.4 180.5 105.1 

Totals: 7,284 4,803 4,547 5,074 

       

There are cases where only the aggregate results are available, for example at zip code or county level. 

One might still use the above presented method to combine the losses from ground shaking and fire 

following, but have to be aware that they could be different from the site by site combined results.  

For this illustrative example we have compared the mean losses of the combined shake and fire for the 

same portfolio using results at the site, zip code and county level. For this example, the error introduced 

by using the aggregate results is between -3.0% and 1.2%. 

 
Table 5.4 Combining Shake at Fire at zip code Aggregation Level. 

Zip 
 

Shake  Fire Shake + Fire 

TIV Event 1 Event 2 Event 3 Event 1 Event 2 Event 3 Event 1 Event 2 Event 3 

1 1,796 964 1,124 836 627 614 415 1,254.5 1,353.9 1,057.6 

2 3,654 1,844 2,021 1,837 731 456 1,649 2,206.0 2,224.2 2,657.0 

3 1,834 790 847 1,007 719 330 688 1,199.3 1,024.3 1,317.1 

 

7,284 3,598 3,992 3,679 2,077 1,399 2,752 4,660 4,602 5,032 

Results from Site-by-Site Analysis from Table 6.3 4,803 4,547 5,074 

Difference between aggregate and site-by-site results -3.0% 1.2% -0.8% 

 

 

6. SUMMARY AND CONCLUSIONS 

 

A method for combing monetary losses from earthquake ground shaking and fire following that avoids 

double counting, also known as ‘the problem of burnt ruble’ has been presented. The advantage of the 

presented methodology is that it allows to combined losses due to earthquake ground motion, “shake”, 

and fire following earthquake, “fire”, when one has access only to the event loss table, i.e. the losses for 

the list of hypothetical events.  

 



It has been demonstrated that the method can be applied to aggregate results with acceptable accuracy. 

The resulting combined event loss tables for “shake+fire” can be used to derive loss exceedance 

probabilities and other statistics, that is out of the scope of this paper. 
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