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SUMMARY:  

Hundreds of Precariously Balanced Rocks (PBRs) exist in California. Since these rocks have been precariously 

placed for thousands of years, they can help in constraining the range of PGV (peak ground velocity) and 

frequency content of the ground motions that could not have occurred at this location during the time that the 

rock has been precariously positioned. We are developing 3-D models (with accurate rock-pedestal contact 

interface) of some of the PBRs that have been imaged using Terrestrial Laser Scanning (TLS) techniques. We 

use Rigid body dynamics to solve for the dynamic response of the rock models subjected to idealized and 

earthquake ground motions intensities to arrive at probabilistic constraints on region-wide ground shaking 

intensity by combining the results of this study with cosmogenic dating of these rocks. Such analyses could help 

quantify seismic hazards and validate ground motion simulations. 
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1. INTRODUCTION 

 

There are several precariously balanced rocks (PBRs) in the western US located on hill-sides and 

cliffs. Many of these rocks have evolved naturally and have been in their present configuration for 

thousands of years (Brune, 1996; Bell et al., 1998). To constrain the amount of time the rocks have 

been precarious, cosmogenic dating of the pedestal, rock and other surfaces on the surrounding 

landscape have been conducted (Hudnut et al., 2009). Brune conducted several road surveys in 

Southern California and Nevada and cataloged hundreds of precariously balanced rocks (Brune, 1996; 

Brune et al., 2006). These rocks are classified into two categories using a rough estimate of their quasi-

static toppling acceleration (i.e., the minimum constant ground acceleration required to overturn the 

rock). An estimate of this acceleration can be obtained from pictures of the rock or from tilt tests, 

wherein the force required to tilt the rock until it is balanced on its outermost contact point is 

measured. If the quasi-static acceleration is between 0.1-0.3g, the rock is precariously balanced; else if 

it is between 0.3-0.5g, it is semi-precariously balanced rock. The presence of zones of PBRs thus 

indicates that no strong ground shaking has recently occurred in those areas, contradicting the 

published ground motion maps at least for some areas. An example of a PBR is the Benton rock [Fig. 

1.1], which is an approximately 2 m high rock, present halfway between the San Jacinto and Elsinore 

fault zones (Brune et al., 2006). This rock, along with the other rocks in this area, offers the possibility 

of obtaining strong statistical constraints on ground motion from large earthquakes along the two 

faults. Rocks like these provide a direct indication of past ground shaking, as opposed to paleoseismic 

studies of fault motion, which only indicate total slip in events and not the actual time history of slip. 

Therefore, these rocks are effectively low-resolution strong motion seismoscopes and have the 

potential to provide constraints on ground motion for very large historic earthquakes (Brune, 1996; 

Anooshehpoor et al., 2002), and may eventually provide important information for the design of 

sensitive structures, such as hospitals and power plants. 



 
 

Figure 1.1. Benton Rock and location of band of PBRs between San Jacinto and Elsinore fault zones 

 

Most of the numerical or analytical work on PBRs have roots in Housner’s work (Housner, 1963). 

Housner was among the first to investigate the dynamics of a slender rigid block on a rigid horizontal 

base undergoing horizontal motion. The governing equations of motion are nonlinear and non-smooth 

requiring numerical solution or linearization to evaluate the response. Housner linearized the equations 

of motion and developed an expression for the minimum acceleration required to overturn the block 

when subjected to two simple base excitations: a rectangular pulse, and a half-sine pulse. Yim et al. 

(1980) examined the effect of the block size and its slenderness, together with other parameters that 

affect rocking motion. He found that vertical ground motions and small deviations in the velocity 

reduction applied at impact (to prevent bouncing when the block transitions from one corner point to 

another) do not systematically affect the overturning probabilities although they may affect the 

overturning response in particular cases. 

 

With the advancement in technology, the potential to carry out complex numerical and experimental 

studies have increased tremendously. Shi et al. (1996) developed a finite-difference numerical code to 

examine the response of a rocking rigid body subjected to complex ground motions. Zhang and Makris 

(2001) further discussed the analytical problem and supplemented the results with numerical 

simulations. Anooshehpoor et al. (2004) developed a methodology to obtain the quasi-static toppling 

acceleration of precariously balanced rocks from field tests. They also conducted shake table 

experiments on rectangular blocks of various sizes and rocks of different shapes by subjecting them to 

many synthetic and real ground motion records. They verified that rocking will not initiate unless 

ground acceleration exceeds the quasi-static toppling acceleration in the case of blocks with simple 

contacts and they attributed the toppling of a few rocks at accelerations less than quasi-static toppling 

accelerations to the bumpy contact surface of the rocks. The work of Purvance et al. (2008) is built on 

the work of Anooshehpoor et al. (2004). They inferred that in addition to the block geometrical 

parameters and PGA, the intensity measures PGV/PGA and the PGA, normalized spectral 

accelerations at 1 and 2 s [Sa (1)/PGA and Sa (2)/PGA] were the strongest indicators of the overturning 

potential. They also obtained an expression that provides an estimate of the overturning probability, P, 

based on the PGV/PGA ratio and the slenderness angle, and validated this expression for rectangular 

blocks and some rocks through various shake table experiments. They idealized the rocks with 

complex basal contact geometry using models with simple basal points. 

 

These results are a great starting point to understanding precariously balanced rocks even though they 

have certain limitations. The idealizations and assumptions inherent in these analyses could have a 

significant impact on their rocking response. Many of the precariously balanced rocks are in locations 

which are not easily accessible and conducting tilt tests (to obtain quasi-static toppling acceleration) is 

not feasible. Shake table experiments cannot be performed on the actual rock-pedestal system. A 

simple 2-D analysis by modifying the rock to resemble a block with simple contact points will not 

work for all rocks because of two main reasons. Firstly, tilt test data is required for this modification. 

Secondly, the rocking response of 3-D rocks with complex shapes and complex basal contact points is 



not restricted to the plane in which the excitation is applied and we demonstrate in the next section that 

the basal curvature plays an important role in the response of the rock.  

 

 A detailed 3D model of the rock and the pedestal can be built from the data obtained by Terrestrial 

Laser Scanning (TLS) techniques and also assembled from multi-view photographs of the rocks. The 

response of this model to different earthquake ground motions can be analyzed using rigid body 

dynamics under the assumption that the rock and the pedestal behave like rigid bodies. This will 

provide a good constraint on the upper limit of the ground motions experienced by the site of the rock.  

We are establishing the proof of concept through a prototype study of the recently imaged Echo Cliffs 

PBR [Fig. 1.2.] located in the Western Santa Monica Mountains. It lies above the ramp in the fault 

propagation fold structure that has been interpreted by Davis and Namson as an active structure that 

may pose a major seismic hazard to the Los Angeles area. The rock withstood moderate ground 

motions during the 1994 Northridge earthquake. Hudnut et al. (2009) estimate the PGA to have been 

0.2g and the PGV to have been 12 cm/sec at this site.  The success of the prototype study will provide 

an impetus to 3-D imaging and analysis of hundreds of PBRs identified and cataloged by Brune et al. 

(2006).  

 

In this article, we first assess the effect of basal curvature of the rock on the response using idealized 

version of the Echo Cliff PBR. Then, we develop a methodology to analyze the response of the 3-D 

rocks using rigid body dynamics. Finally, we validate the methodology using the analytical solution 

for Housner’s block solution as well as an analytical formulation of the idealized version of the Echo 

Cliff PBR.  

 

      
 

Figure 1.2. Echo Cliff PBR and location of Echo Cliff PBR in Santa Monica Mountains 

 

 

2. EFFECT OF BASAL CURVATURE 

 

Housner (1963) derived the equation of motion for a rigid rectangular block (with the two corners as 

contact points) on a rigid base [Fig. 2.1 (a)]. Many others have tried to idealize a 3-D rock with 

complex basal curvature with a 2-D block supported on two simple contact points [Fig. 2.1 (b)]. 

Before moving on to the actual rock, it is important to test the effects of basal curvature on the 

response of the rock in order to judge the accuracy of the simple two point contact approximation. To 

this end, we have developed an analytical formulation for a rock with an idealized curved base as 

shown in Fig. 2.2 (a) and (b). The parameters are height of the block (  , radius of curvature of the 

base     and length of flat part on the base of the rock (  .We assume that the block and the ground 

are rigid, there is no bouncing between rock and pedestal (i.e. at any instant in time at least one point 

of the block is in contact with the ground), and no sliding between the rock and the pedestal. 

 

This is a single degree of freedom system with the angle rotated by the vector, from the center of arc to 

the point about which the block initially starts rotating (i.e. the point where the flat part on the base 



ends and the arc starts indicated by a thick black arrow in Fig. 2.2 a), of the block (   as the degree of 

freedom. The nonlinear equation of motion, obtained using Lagrangian mechanics, for           

is: 
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       (2.1)  

 

Where,   is the second moment of area about the current contact point,    is the first moment of area 

about the   axis and    is the first moment of area about the   axis, both axes passing through the 

current contact point. A similar equation can be written for the opposite arc, i.e.          . In 

order to prevent the bouncing of the block when the response shifts from one arc to the other, 

conservation of angular momentum is used to derive a relation between the angular velocities just 

before ( ̇ ) and just after ( ̇ ) transition from one circular arc to another. 

 

                         
 

(a)               (b) 

 

Figure 2.1.  (a) Housner’s block and (b) simple 2-D approximation of a rock by a two point contact system 

 

To understand the effect of rock basal shape, we estimate the toppling regime of an Echo Cliff PBR-

like block by analyzing it under idealized sawtooth-like ground velocity waveforms [Fig. 2.2 (c)] with 

varying PGV and T. The values of the parameters for the Echo Cliff PBR-like block are   
               and        . The equation of motion is solved numerically using     order 

Runge-Kutta method.  Fragility maps showing the excitation domain where the toppling occurs, are 

obtained by plotting the peak X displacement of the center of mass as a function of PGV and T of the 

ground excitation. To analyze the effect of basal curvature, fragility maps are obtained for blocks with 

       ,         and         [Fig. 2.3].  As the basal shape factor increases, the excitation 

domain over which toppling occurs increases. This is the pink region in the Fig 2.3. The fragility maps 

depend on the value of the peak X displacement of the center of mass. If the center of mass goes 

beyond a certain point (which depends on the geometrical parameters), the block will topple. Here 

peak displacment of 5 (pink region in Fig. 4.2.1) indicates the toppling regime of the block. 

 

It can be seen that the basal curvature does have a significant effect on the rocking response. The 

response of simple two point contact systems would be vastly different from reality. Also the 

assumptions of no bouncing and no sliding are not very realistic. If either or both phenomena are taken 

into account, the ground motion required to topple the block would have to be stronger than the 

analytical case discussed above. This motivates the proposed work of modeling the rocking response 

(including sliding/bouncing) of precariously balanced rocks in great detail in three dimensions with 

accurate basal geometry. Fortuitously, terrestrial laser-scanning techniques are making it possible to 

image the outer form of precariously balanced rocks and their contact with the underlying pedestals in 

unprecedented detail. We are pursuing a method to calculate the 3D response of PBRs that is based on 

rigid body dynamics incorporating the in-situ contact conditions.  

 

    



 
 

(a)      (b)    (c) 

 

Figure 2.2.  (a) Initial configuration of the idealized block with curved base, (b) configuration after it has rotated 

by an angle   and (c) idealized saw-tooth ground velocity pulse 

                  

    
(a)    (b)    (c) 

 

Figure 2.3. Peak X displacement of the center of mass as a function of PGV and T of the ground excitation for 

(a) basal curvature half that of the rock, (b) basal curvature same as that of the rock and (c) basal curvature twice 

that of the rock 

 

 

3. RIGID BODY DYNAMICS 

 

Consider a rigid body rotating and translating in space. XYZ is the global coordinate system attached 

to the ground and X'Y'Z' is the local coordinate system which is fixed to the rigid body, i.e, the local 

coordinate system will translate and rotate along with the rigid body. The origin of the local coordinate 

system is at the center of mass of the body. Initially (at t=0), the global and local coordinate systems 

are co-located. Let     be the position vector of the center of mass in the XYZ coordinate system, 

 ̇   be the translational velocity of the center of mass,   be the rotation matrix which is a 

transformation mapping from the X'Y'Z' to the XYZ coordinate system and   be the angular 

momentum of the rigid body about the center of mass. These four quantities are the state variables as 

they provide complete set of information about the rigid body at any instant in time. The rate of change 

of these state variables with respect to time are given by Eqns. 3.1-3.4.  
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Here,   is the moment of inertia tensor of the body about the center of mass at time t in the XYZ 

coordinate system,   is the angular velocity of the body (        ),    is the vector of forces acting 

on the body,    is the net torque acting on the body and   is the mass of the rigid body. Eqn. 3.2 and 

Eqn. 3.4 are the force and moment balance equations respectively. Since we assume that the body does 

not deform,    needs to computed just once at    . Let    be the moment of inertia tensor of the body 

about the center of mass in the X'Y'Z' coordinate system.   (at any time t) can be obtained by a simple 

coordinate transformation (         ). 

 

We can time discretize Eqns. 3.1-3.4 and step forward in time using constant average acceleration 

method and direct iteration scheme to ensure that equillibrium is satisfied at the end of each time step. 

At the end of each iteration   when going from   to     , we verify whether    is a rotation matrix 

by checking whether            and    
     , where    is the     identity matrix. If    is 

not a rotation matrix, then we use Cayley transform (1846) to project    back into       (Special 

Orthogonal group, i.e. space of rotational matrices). 

 

The discussion above is for a general rigid body dynamics solver. For the rock, we can use the general 

solver but for the pedestal we will need only Eqn. 3.1 -3.2 as the pedestal does not rotate. At the end of 

each time step, we update the coordinates of the nodes on the base of the rock and the nodes on the 

pedestal and check whether the rock is penetrating into the pedestal. If any of the basal nodes of the 

rock are within    (tolerance) from the surface of the pedestal, then that node of the rock is in contact 

with the pedestal. If any node of the rock penetrates a distance more than   into the pedestal, we step 

back in time and solve the system of equations for a reduced time step. We repeat this procedure until 

no node of the rock penetrates more than   into the pedestal. 

 

Once we have the contact points, we need to resolve collisions and find contact forces. Let us consider 

the case of a ball bouncing on the ground. The instant just before the ball collides with the ground, the 

relative normal velocity of the ball with respect to the ground is negative, i.e., the ball is moving 

towards the ground. The instant it hits the ground, the velocity of the ball changes instantaneously and 

the relative normal velocity of the ball becomes greater than or equal to 0, i.e, it starts moving away 

from the ground. For changing the velocity of the ball instantaneously, we will have to apply an 

impulsive force normal to the surface of the ground. The magnitude of the impulsive force will depend 

on the coefficient of restitution ( ) and the state variables. For the case of the rock, say there are   

contact points. Let   
  and   

  be the relative normal velocity of the rock at the point  , with respect to 

the pedestal, before and after collision, respectively, and      be the impulse applied at the point.    is 

the unit normal vector to the pedestal at contact point  .   
  can be written as a linear combination of 

impulses applied at all contact points. Therefore,         where    is the vector of relative 

normal velocities at all contact points after collision and   is the vector of magnitude of impulsive 

force at all contact points. Here,     contains the contribution of impulse applied at point   to the 

relative normal velocity at point   and    contains the contirbution from relative velocity of all the 

contact points before impact     . The components of   are functions of the state variables (   
 , 

 ̇  
 ,    and   ), mass of the rock ( ),   and    Impulses should only push the rock and the pedestal 

away, they should not make them stick together (    ). The relative normal velocities before (  
 ) 

and after (  
 ) collision are related by the coefficient of restitution (  

        
 ). Finally, since the 

impulse is being applied only to satisfy   
        

  at that contact point, if this condition is already 



satisfied, the impulse acting at that point should be zero, i.e,      
       

     (complementarity 

condition). All these conditions can be put together to form a Linear Complementarity problem (LCP) 

as shown in Eqn. 3.5. This has been solved using the Dantzig's algorithm (Cottle et al., 1968). Once 

the impulses are obtained, we update the velocity of the center of mass ( ̇  
 ) and the angular 

momentum (  ). For the case of the rock, we can set      if we want the collision to be perfectly 

inelastic (i.e, no bouncing). 

 

                        
     

     and         
     

       (3.5) 

 

After resolving collisions, if the relative normal velocity of contact point   is equal to 0, then the point 

is in resting contact. For example, a book resting on a table or sliding on a table are examples of 

resting contact. For each contact point, along with the normal direction, we define a set of orthogonal 

vectors (   and   )  which are tangential to the surface of the pedestal.   ,    and    form an 

orthogonal coordinate system at contact point  . Let    ,     and     be the relative normal and 

tangential accelerations of point   on the base of the rock with respect to the pedestal. Whereas in case 

of collision, we apply impulses in order to change the velocities, for resting contact, we modify the 

acceleration of the body so that it does not penetrate into the pedestal. We do this by applying normal 

contact forces (     ) at each contact point. In order to model the effects of friction between the rock 

and the pedestal, we apply tangential frictional forces (      and      ). If the relative tangential 

velocity of the contact point   is zero, then we have the case of static friction, otherwise we have the 

case of dynamic friction. 

 

Let us consider the case where there is only static friction. Let     and    be the coeffienct of static and 

dynamic friction respectectively. Let   〈                                                           〉
  and   

〈                                                           〉
 . Similar to the approach taken to resolve collison, the 

acceleration of any point   can be written as a linear combination of the forces acting on all the contact 

points. Therefore,       . Here,   and   are functions of the state variables, mass of the rock and 

the moment of inertia tensor.     represents the contribution of force acting at point   to the 

acceleration at point   and    represents the contribution of external forces like gravity to the 

acceleration of point  . The normal forces can only push the bodies apart and cannot pull them 

together, i.e,      . If the relative normal acceleration of a contact point is negative, the point will 

penetrate into the pedestal during the next step. So, we want the relative normal accelerations to be 

greater than or equal to zero, i.e,      . If the relative normal acceleration of a contact point is 

greater than zero, it implies that the point will move away from the pedestal during the next time step, 

therefore, the normal contact force acting on it should be zero, i.e,         . The conditions on the 

frictional force are: (i) its magnitude at a point should be less than      , (ii) it should partially oppose 

the tangential acceleration, i.e.,                  and (iii) if the magnitude of the tangential 

acceleration is greater than zero, during the next iteration the rock can start sliding, therefore, it should 

be at its maximum value (      . The LCP is given in Eqns. 3.6 and 3.7. Baraff(1994) modified 

Dantzig's algorithm to incorporate frictional forces for a 2-D problem. We have modified that 

algorithm to accommodate friction in a 3-D problem. 

 

                               and               (3.6) 

 

√   
     

                             and   √   
     

 (     √   
     

 )    (3.7) 

 

When the rock starts sliding (i.e., when relative tangential velocity of the contact points are non-zero), 

there will be dynamic friction involved in the problem. The frictional force will have the magnitude of 

      and the direction of force is such that it opposes the tangential velocity. Once the contact forces 

are obtained, we can include these forces into the   
  and the moments due to these forces into   

 , 

solve the system of Eqns. 3.1-3.4 for the next time step, and march forward in time.  

 



4. VALIDATION OF RIGID BODY DYNAMICS ALGORITHM 

 

We will now validate the rigid body dynamics algorithm for two cases: uni-directional ground 

acceleration (Housner’s block subjected to half sine pulse) and bi-directional ground acceleration 

(idealized Echo Cliff Rock-like block subjected to idealized sawtooth ground velocity pulse). 

 

4.1 Housner’s block 

 

We first validate the rigid body dynamics algorithm using the Housner’s block solution. Housner 

(1963) linearized the equation of motion, applied a half-sine pulse acceleration to a rigid rectangular 

block sitting on a rigid surface and calculated an expression for the magnitude of acceleration required 

to topple the block. We solve the nonlinear equation of motion for the Housner’s block using     order 

Runge-Kutta method and compare this solution against computed by the rigid body dynamics 

algorithm.   

 

 
 

(a)     (b)   

 

Figure 4.1.1. (a) Housner’s block and (b) Half sine-pulse acceleration 

 

The parameters of the block are half width ( ) =0.2 m, half height ( ) = 0.6 m and angular frequency 

of ground excitation (   = 2  rad/sec. The acceleration applied is              [Fig. 4.1.1(b)], 

where   is the magnitude of applied excitation,   is the angular frequency of ground excitation and   

is the phase angle (which is such that the acceleration at t=0 is just enough for the block to lift off the 

ground). Both the methods predict the magnitude of toppling acceleration to be between      
          (note the load step size for computation is          .  The time history of the angular 

displacement of the block (   normalized by the slenderness angle [              is plotted for 

            and             [Fig. 4.1.2]. The toppling criterion is that if      , then the 

block topples as the applied acceleration is unidirectional.  

 

     
   (a)      (b)   

 

Figure 4.1.2. Normalized angular rotation time history for (a)             (Non-toppling case) and (b) 



            (Toppling case) 

 

4.2. Idealized Echo Cliff-like block 

 

Next we validate the algorithm using the results from the idealized representation of the Echo Cliff 

rock [Fig. 2.2 (a) and (b)]. Recall that,  in section 2 we presented the equation of motion for an 

idealized block with basal curvature and obtained the fragility maps under idealized sawtooth type 

ground velocity pulse [Fig. 2.2 (c)] by solving Eqn. 2.1 using     order Runge-Kutta method. The 

fragility maps depend on the value of the peak X displacement of the center of mass. If the center of 

mass goes beyond a certain point (which depends on the geometrical parameters), the block will 

topple. Here peak displacment of 5 (pink region in Fig. 4.2.1) indicates the toppling regime of the 

block. 

 

              
(a)      (b)   

 

Figure 4.2.1. Fragility maps for  idealized Echo Cliff-like block as a function of PGV and T for sawtooth type 

ground velocity pulse using (a) analytical method presented in section 2 and (b) rigid body dynamics algorithm 

 

 

5. Modeling Echo Cliff PBR and Future Work 

 

As a first step to modeling the rock, we need to find the moment of inertia tensor of the rock about its 

center of mass. The Echo Cliff PBR was imaged by Hudnut et al. (2009) using TLS (Terrestrial Laser 

Scanning) techniques. The point cloud obtained from TLS is very dense [Fig. 5.1]. To reduce the 

computational effort, we select a reduced data-cloud consisting of 864 points, with 624 points on the 

rock and 240 points on the pedestal. The points on the rock represent only the outer surface of the rock 

and they are not equally spaced. In order to obtain equally spaced nodes throughout the rock, a 

delaunay tetrahedralization of the rock is created using MATLAB. A 3D grid of equally spaced points 

is created and all the points which lie on or inside any of these tetrahedrons form the equally spaced 

nodes of the rock [Fig. 5.1]. Assuming that the density of the rock is constant, we calculate the 

moment of inertia tensor of the rock using the coordinates of the nodes. To determine the rock-pedestal 

interface points, the dense data cloud of the interface obtained from the TLS data is superimposed on 

the nodes present at the base of the rock and the nearest neighbors to the interface data cloud are 

found. Any node on the base which is on or inside the boundary specified by the interface data cloud 

constitutes a basal contact point. Assuming that the density of the rock does not vary, we can calculate 

the moment of inertia tensor of the rock from the nodal positions.  

 

We are currently analysing the response of the rock to idealized ground velocity pulse [Fig. 2.2 (c)] 

applied in different directions and we plan to compare the results obtained from this analysis with that 

obtained by Purvance et al. (2008), who obtained a generalized expression for the overturning 

probability from a series of shake table experiements on blocks of varying sizes. We will then examine 

the effect of sliding by varying the coefficient of friction. From a thorough analysis of the Echo Cliff 



PBR, we are trying to assess the toppling sensitivity of the rock to the pulse period, amplitude, number 

of cycles, direction of excitation and coefficient of friction.  We will then analyze the other rocks 

present in Southern California and come up with probabilistic constraints on region-wide ground 

shaking intensity for Southern California.  

 

         
 

Figure 5.1. Dense point cloud from TLS data, coarser set of nodes, delaunay triangulation using MATLAB and 

equally spaced nodes of the rock 
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