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distribution of components within a facility. The methodology presented in this paper utilizes an 
engineering-based component-level approach to evaluate the seismic risk for industrial facilities. 
 
 
2. METHODOLOGY OVERVIEW 
 
The methodology presented in this paper employs a component‐level approach to develop the seismic 
vulnerability of the major component classes typically observed at industrial facilities. The 
vulnerability is defined in terms of damage functions,1 for evaluating the physical damage (PD) loss to 
industrial facilities. The advantage of the engineering-based component-level approach is that since it 
aggregates up the expected performance at the component level to the facility level, it is capable of 
capturing the differences in valuation and performance of constituent components thereby providing 
realistic estimates of the PD losses. Furthermore, this approach results in uniformity in the risk 
evaluation across different types of industrial facilities. The component‐based approach to estimating 
PD losses also provides a reliable means for assessment of the business interruption (BI) losses. The 
capability of modelling the damage states of components, coupled with industrial process network 
modelling, allows for a robust determination of the facility BI losses, which are heavily dependent on 
the numerous interactions between the various components and lifelines (e.g., electricity generation 
and supply, steam, nitrogen, transportation networks, among others). The PD portion of the 
methodology essentially comprises of the following three primary steps: 
 
 Step 1: Different assets within an industrial facility are categorized into component classes 

(e.g., tanks, flares, cooling towers, process towers, equipment, and contents) and sub-
components (e.g., in the case of flares: freestanding, guyed, and derrick flares) and their 
vulnerability is derived based on on‐site investigations, engineering analysis, literature review, 
and historical data. The grouping of assets into component classes is done based on similarity 
of structural characteristics, functionality, and importance, while the sub‐grouping is intended 
to capture any significant differences in vulnerability that may exist within a component class. 

 Step 2: The replacement cost for the entire industrial facility is partitioned into the 
replacement costs for the previously defined component classes. 

 Step 3: The PD damage function for the entire industrial facility is derived by appropriately 
weighting the PD damage functions of the component classes and sub‐components at the 
facility.  

 
2.1 Component and Facility Damage Functions Development 
 
The derivation of the seismic vulnerability, in terms of damage functions, for the various component 
classes and specific sub-components is based on a combination of information obtained from literature 
reviews, on-site investigations and information from facility personnel, engineering analyses, and 
historical data. These primary building blocks of the methodology are discussed below:  
 
 On‐site investigations: On‐site investigations conducted by the authors both in the pre-

catastrophe situation (for risk assessment and mitigation purposes) and in the post-catastrophe 
situation (for damage assessment and repair) have resulted in a wealth of information such as 
condition of key components, observed failure modes, unique characteristics of components, 
clarifications on the valuation breakdowns for various facilities, among other information, 
which is invaluable in developing the component-level vulnerability. 

 Literature review: A thorough review of the technical literature provides information on the 
documented performance of various components during laboratory testing and/or detailed 
analytical evaluations. 

 Historical observations: Review of documentation of observed damage to various facilities 

                                                            
1  Damage functions for physical damage (PD) are relationships between a measure of the physical hazard (e.g., ground shaking, wind 

speed, and flood depth) and a “damage ratio,” which is a ratio of the cost for repair of the component to the total replacement value of the 
component. 
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A finite-element model of a typical bent was developed. The dead load and seismic mass were 
computed from the self-weight of the structural elements and by assuming a range of pipe loads 
corresponding to 20, 40 and 80 percent of the plastic moment capacity for each beam. An eigen-value 
analysis was carried out to evaluate the modal properties of the bent structure in the transverse 
direction; the fundamental periods were computed to be 1.78, 2.47 and 3.46 seconds, respectively, for 
the 20, 40 and 80 percent beam load cases. A nonlinear static (pushover) analysis was carried out to 
identify key inelastic response limit states and quantify the corresponding ground motion intensity in 
accordance with the provisions of ASCE/SEI 41-06. The lateral load was distributed in an inverted 
triangular pattern. The pushover analysis accounted for the formation of axial plastic hinges 
(compression buckling and tension yielding) in the bracing elements and columns, and flexural plastic 
hinges in the columns and at the mid-span of the beams where the braces connect. 
 
Figure 4 presents the pushover curves for lateral loads in the transverse direction, as well as key limit 
states and corresponding equivalent ground motion PGA. The spectral acceleration (Sa) was 
predominately utilized to quantify ground shaking intensity, although the corresponding peak ground 
acceleration (PGA) was also quantified.  The hinges are color coded to signify the extent of plastic 
deformation, which can range from minimal yielding (B-purple) to significant loss of strength 
associated with member collapse (C-yellow). To quantify the effects of seismic mass (beam gravity 
loading) on the ground motion intensity associated with each limit state, three PGA values are 
presented corresponding to the 20, 40 and 80 percent beam load cases discussed previously. 
 

 
 

Figure 4. Pushover curve and limit states for representative steel pipe rack. 
 
As Figure 4 indicates, with increasing lateral loads in the transverse direction, the first plastic hinge 
formed at the compression brace (buckling), followed by a sharp drop in strength and subsequent 
strength gain at a reduced stiffness. Next, flexural hinging of the bottom beam occurred at the brace 
connection due to the large force unbalance associated with the buckled compression brace. Hinging at 
the column bases followed near the ultimate strength of the structure. The structure continued to 
deform with decreasing strength until hinges develop in the columns above the bottom bay. At this 
point of the analysis, a mechanism formed above the bottom bay, as the beams are not welded to the 
columns, and the analytical model collapses. 
 
The limit states on the pushover curve in Figure 4, having already been related to ground motion 
intensity, can be related to levels of damage and corresponding repair costs to establish damage ratios. 
This exercise was carried out in discussions with facility personnel to determine the actions that would 
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2.4 Assessment of BI Loss Potentials for Components and Facilities 
 
The procedure discussed previously results in damage functions for assessing the PD losses. 
Assessment of BI losses is significantly more complex, especially for highly integrated facilities with 
multiple process chains, bottlenecks, and redundancies. The major contribution to BI loss is the loss of 
revenues incurred when product chains are not functioning either partially or completely. Disruption 
of product chains can occur for a variety of reasons: 
 
 Partial or complete damage to one or more components on the product chain (for example, 

damage to a particular flare can result in the entire product chain being non-operational); 
 An internally consumed by-product from a different product chain is unavailable because that 

chain has been adversely affected; 
 One or more lifelines (e.g., steam, power, gas, nitrogen, transportation networks, electricity 

generation and supply, among others) feeding the product chain have been adversely affected 
(this can also include external lifelines, if pertinent data is available), or 

 Transfer of finished products has been impeded by damage to storage, loading and/or 
transportation systems. 

 
A reliable assessment of the BI loss requires that a detailed network model be built that accounts for 
the functional dependencies between all the components and lifelines comprising a product chain. Key 
input to this process is a relationship between the physical damage to a component or lifeline and the 
downtime2 associated with the same. The authors have assembled information on various components 
and developed a database that provides estimates of the downtime of a component given the physical 
damage expectation for the same. Development of this database has relied on information gathered 
from facility operators at various industrial facilities and information in the public literature. This step 
also considers whether the damage to a component has occurred in “peace time” (i.e., at a general low 
level of damage to the facility and surrounding areas) or in “catastrophe time,” wherein the facility and 
other facilities in the area have sustained severe damage and there may be a shortage of parts and labor 
for getting the component back into service thereby resulting in increased downtime. As with the 
physical damage relationships, there is variability associated with the downtime for a component given 
the physical damage, which needs to be explicitly incorporated in a probabilistic loss evaluation. 
 
The process for developing facility-level downtime functions is as follows: 
 
 The expected physical damage to the constituent components of the facility is generated for 

numerous simulations of the earthquake events. Note that, as shown in Figure 3 (right), 
different levels of damage are computed for the same component in the various simulations. 

 Based on the physical damage estimated for each component for each of the simulations, the 
distribution of the downtime for each component is calculated.  

 The network model is executed and the BI damage functions for the facility are derived under 
the assumption that a facility is not producing until all components in it have resumed normal 
operations. Hence, in each simulation used to derive the facility downtime function, the 
downtime value retained for the facility is equal to the largest downtime value of all the 
constituent components. Different variations of this process can be implemented depending on 
particular facility and product chain characteristics. 

 
The process described above, in itself, does not capture the entire risk potential as additionally lifelines 
including third-party vendors may need to be considered. It is important to recognize that, especially 
in large industrial facilities, if the interaction between product chain components and lifelines is 
neglected, then the prediction of the downtime of the product chain and therefore of the BI losses may 
be systematically underestimated. This can only be addressed through a facility specific evaluation. 

                                                            
2  Business interruption is typically quantified in terms of downtime, or the time in days it would take for a component or network to return 

to full operability. A downtime function relates the intensity of physical damage sustained by a component or facility to the number of 
days it would take to return the component or plant or facility to pre-event conditions or full operability. 
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functions for the same. The relative value of the major component classes is then used to weigh the 
individual components’ vulnerability to arrive at the overall industrial facility vulnerability. This 
approach results in a transparent and more reliable quantification of the catastrophe risk as it quantifies 
the risk at the component level, which is not only based on sound engineering, but can also be 
validated against the limited historical data more effectively. Furthermore, assessment of the risk at the 
component level allows for developing risk hierarchies that allow for development of focused 
mitigation options and cost-benefit evaluations amongst various mitigation options. Combining 
component level risk assessments with network modelling further allows for quantification of the 
business interruption risk associated with the process network.  
 
The methodology not only yields itself to computing mean loss potentials, but can also be used to 
propagate the variability associated with the individual component vulnerability (in terms of physical 
damage and downtime) to obtain the uncertainty of the loss potential at the facility level. In summary, 
the methodology presented allows for reliable quantification of the catastrophe risk that can then be 
used for informed decision making for risk management purposes. 
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