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SUMMARY:  
There are a sparse number of credible source models available from past earthquakes and a stochastic source 
model generation algorithm thus becomes necessary for robust risk quantification using scenario earthquakes. 
We present an algorithm that combines the physics of fault rupture as imaged in laboratory earthquakes with 
stress estimates on the fault constrained by field observations to generate probability distributions of rise-time 
and rupture-speed for strike-slip earthquakes. The algorithm is validated through a statistical comparison of peak 
ground velocity at 636 sites in Southern California from synthetic ground motion histories simulated for 10 
rupture scenarios using a stochastically generated source model against that generated using a kinematic source 
model from a finite source inversion. This model, selected from a set of 5 stochastically generated source 
models, produces ground shaking intensities in Southern California with a median that is closest to the median 
intensity of shaking from all 5 source models (and 10 rupture scenarios per model). 
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1. INTRODUCTION 
 
Rupture-to-rafters simulations provide a holistic approach towards the safe design of structures. 
Generating stochastic seismic source models for these simulations is a crucial step, given the limited 
number of credible source models from historical earthquakes. The seismic source model is a 
mathematical representation of the earthquake rupture process. Two types of source models are used 
in earthquake physics: (i) “kinematic” models, which prescribe the spatial and temporal evolution of 
the rupture speed, the slip, and the slip velocity on the fault, inferred from seismic, geodetic, and 
geological observations; and (ii) “dynamic” models, which prescribe the fault prestress, fracture 
energy, and stress drop. An earthquake is nucleated at a point in the model by artificially increasing 
the pre-stress above the shear strength. The rupture process is then allowed to evolve dynamically as 
dictated by an assumed fault friction law. The development of dynamic source models is an active area 
of research in earthquake source physics (e.g., Schmedes et al. 2010). While dynamic source models 
may better characterize earthquake source physics, the theory is more complex and less mature when 
compared to kinematic source modeling (e.g., the state of stress in the earth and the fault friction law 
are not known; they are not as well-constrained as kinematic source parameters such as slip). Here, we 
represent an earthquake source using a kinematic model. Kinematic description of the source involves 
dividing the fault rupture plane(s) into a number of smaller sub-events. Each sub-event is 
characterized by three parameters: slip, rupture speed and slip velocity-time function. Brune (1970) 
proposed one of the earliest models for earthquake source representation, in which near and far-field 
displacement spectra are calculated from a fault dislocation model representation accelerated by 
effective stress. Significant progress has been made in kinematic source modeling since then with the 
help of data collected by modern seismic networks. We start with a brief description of existing and 
current approaches to prescribing the three source parameters for each sub-event. 
 
  



1.1. Slip Distribution 
 
Of the three source parameters, spatial variation of slip is perhaps the best understood parameter, 
partly due to the fact that surface slip in a finite source inversion of an earthquake can be constrained 
using geodetic observations. The power spectral density (PSD) of the two-dimensional slip 
distribution in these inversions typically decays with wave number according to a power law. On the 
basis of this observation, a PSD function, inferred from finite-source inversions of past earthquakes, 
could be inverted back to the spatial domain to produce a stochastic slip model (e.g., Somerville et al. 
1999, Mai and Beroza 2002). It should be noted that inversions of only a limited number of large 
magnitude earthquakes were used in these studies to develop the PSD function (e.g., see Fig. 1.1). 
Moreover this approach anchors the sources to a specific value of power-spectral decay and may not 
capture the degree of variability perhaps inherent to seismic sources. 

 
 

Figure 1.1. Histograms of magnitudes of past earthquakes considered by (left) Somerville et al. 1999 (right) Mai 
and Beroza 2002 for determining spectral properties of the distribution of slip on the fault. The source 

mechanisms of these earthquakes are not limited to strike-slip, but include reverse, thrust etc. Note the sparse 
number of large magnitude (Mw ≥ 7.0) earthquakes included in either study. 

 
An alternate approach, adopted here, is to generate spatial distributions of slip stochastically and 
accept or reject each model by comparing its spectral properties against that of finite-source inversions 
of past earthquakes. Our algorithm is based on a recursive division model in which the rupture area is 
divided recursively along length, until each daughter segment has a dimensional aspect ratio close to 
1.0. Lognormal probability distributions are used to characterize mean slip on each daughter segment. 
The mean and standard deviation of the distribution depends upon the magnitude of its parent 
segment. Slip on each daughter segment is assigned a value equal to a single realization of the 
corresponding probability distribution, with the slip vector oriented along length (rake is 1800, pure 
strike slip fault). To introduce slip variation along depth, each (approximately square) daughter 
segment is subdivided into four segments using one subdivision along depth and one along length. The 
assignment of slip for this penultimate generation of daughter segments is based on the same method 
as the previous generations of daughter segments. Finally, these penultimate generation segments are 
subdivided along length and depth to the resolution needed for wave propagation simulations. Slips 
are assigned to this final generation of segments as realizations of the lognormal probability 
distribution corresponding to the magnitude of the corresponding parent segment from the penultimate 
generation. A filter is applied to smoothen the resulting slip distribution eliminating sharp spatial 
variations. Additionally at each step the mean slips are scaled linearly to that of the parent segment 
such that the net seismic moment Mo is conserved. The resulting slip distribution is accepted if the 
average power spectra, along the length and the depth of the rupture, decay with wave number 
according to a power law with decay coefficient between 2.0 and 4.0. This is the range of values for 
the decay published in literature (e.g., Somerville et al. 1999, Mai and Beroza 2002). 
 
1.2. Rupture Speed Distribution 
 
The initiation time of slip at any given location along the rupture depends upon the rupture speed Vr. 
Rupture speed can have a significant effect on the character of the radiated seismic waves, the 
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resulting ground motion and the impact on the built environment. While rupture speeds have 
traditionally been assumed to be smaller than the Rayleigh wave speed, evidence from recent 
earthquakes such as 1999 Mw7.6 Izmit (e.g., Bouchon et al 2002), 2001 Mw7.8 Kunlun (e.g., Bouchon 
and Vallée 2003), and 2002 Mw7.9 Denali (e.g., Frankel 2004) point to rupture speeds exceeding the 
shear wave speed. Based in part on this evidence, several new models have been developed with an 
underlying principle that rupture speed is correlated with slip on the fault (e.g., Liu et al. 2006, 
Aagaard et al. 2010). However, Schmedes et al. (2010) could not find evidence of such correlation in 
dynamic rupture models of 315 earthquakes. An alternative resource for gaining insights into the 
rupture process is a laboratory earthquake catalogue. Stable pulse-like ruptures have been realized in 
the laboratory under controlled conditions (e.g., Lu et al. 2010). Rupture speeds in the vicinity of 
0.87VS and 1.67VS (VS is the shear wave speed in the medium) have been measured for ruptures 
propagating at sub-Rayleigh and super-shear speeds, respectively. In our source representation, we 
assume that rupture initiates at a sub-Rayleigh speed of 0.87VS and use estimates of pre-stress on the 
fault from geodetic, borehole and other observations catalogued in the World Stress Map project to 
assess whether conditions exist for rupture to transition to super-shear speeds as it progresses along the 
fault. If such conditions exist for any sub-event, we prescribe a rupture speed of 1.67VS for the same. 
 
1.3. Slip Velocity-Time Function 
 

 
 

Figure 1.2. Rise-time vs slip as observed in laboratory earthquakes. The correlation between the two is in 
agreement with dynamic rupture studies conducted by Schmedes et al. 2010. 

 
The slip velocity-time function describes the temporal evolution of slip during an earthquake and is 
characterized by slip magnitude, rise-time (time taken for slip to reach it’s maximum) and peak time 
(time taken to reach maximum slip velocity). Variation of slip velocity with time in a source model 
affects the frequency and amplitude characteristics of the resulting ground motions. It is defined either 
by a single function (single time window) or by a series of overlapping time-shifted functions 
(multiple time window). Given the lack of field observations that capture source physics, our only 
alternative is to use insights from laboratory earthquakes to constrain the slip velocity-time function. 
In the laboratory earthquakes generated by Lu et al. (2010), rise-time (measured in micro-seconds) is 
linearly correlated with slip (measured in micro-meters) as shown in Fig. 1.2. This is in agreement 
with dynamic rupture studies (e.g., Schmedes et al. 2010) and similar to Aagaard et al. (2010), where 
they postulate rise time being proportional to the square root of the slip. We fit a lognormal probability 
density function (PDF) to the slip to rise-time ratio measured in the laboratory earthquakes. Using a 
self-similarity assumption of the mean and variance of the slip to rise-time ratio at the laboratory scale 
being equivalent to that at the earth scale (i.e.,  !

!! !"#$!
=    !

!! !"#
), we then assign independent 

realizations of this PDF as the slip to rise-time ratio for each rupture segment. A slip proportional rise-
time (and slip velocity) is thus prescribed to each segment. It should be noted that Andrews and Barall 
(2011) make a comparable self-similar assumption, that the mean and variance of a PDF for ratio of 
initial shear stress to initial normal stress on the fault is scale independent. 
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2. METHODOLOGY 
 
2.1. Slip (D) 
 
For a given magnitude Mw, rupture area A is estimated using one of several existing magnitude-area 
relationships. Given the seismogenic depth d from field observations, the length of the rupture l can be 
determined. If d exceeds “l”, the rupture dimensions are recalculated assuming a square rupture area. 
Seismic moment Mo and mean slip ! are estimated using: 
 

!! =   10!.!  !!!!".!   =   !  !  !         (2.1) 
 
where G is shear modulus of earth (~ 30 GPa). Shown in Fig. 2.1. is the standard deviation of 
lognormal PDFs of slip in finite-source inversions of 56 past strike-slip earthquakes 
(http://www.seismo.ethz.ch/Events.html) with magnitude Mw in the 6.0-8.0 range, plotted as a function 
of earthquake magnitude. A linear trend can be seen. We use a linear fit to this data to correlate the 
standard deviation of a lognormal PDF characterizing fault slip as a function of magnitude for use in 
our recursive division approach. In this approach, the rupture area is recursively subdivided along 
length into smaller segments, with each parent segment being subdivided into two daughter segments. 
This segmentation is continued until each segment on the fault attains a dimensional aspect ratio close 
to unity. Given the magnitude associated with the parent segment, the standard deviation of the 
lognormal PDF to be used for slip characterization of the daughter segment is determined using the 
linear relation of Fig. 2.1. Two independent realizations of this PDF are assigned as mean slip on the 
two daughter segments. They are scaled uniformly so that the sum of seismic moments of the daughter 
segments matches that of the parent segment. If parent segment Mw is less than 6.0 (lower magnitude 
limit in Fig. 2.1.), the standard deviation corresponding to Mw 6.0 is used. 
 

 
 

Figure 2.1. Standard deviation ! of lognormal probability density functions of slip in finite-source inversions of 
56 past strike-slip earthquakes in the Mw 6.0-8.0 range. A linear trend between ! and Mw can be seen. The best 

least squares linear fit for the data is shown as well. 
 
In the penultimate step, each resulting fault segment is divided into 4 daughter segments (two along 
length and depth alike) to introduce along-depth variation of slip. Mean slips are assigned to each as 
before. In the case of the San Andreas fault with a seismogenic depth of approximately 20 km., the 
area of the resulting fault segments (~ 10km. x 10km.) approximates that of an Mw6.0 earthquake 
(consistent with the lower magnitude limit of the finite-source inversions used in Fig. 2.1.). Finally, 
each fault segment is discretized to the resolution required for wave propagation simulations. Slips are 
assigned as before. Note that the final division is done in one step and not recursively. A unit 2-D filter 
that is Gaussian along length and parabolic along depth is applied to smoothen the slip distribution. 
The dimensions of the filter are d & !

!
! along length and depth, respectively, chosen by a trial and 
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error process to prevent distortion of slip around fault area. The parabola has zero ordinate at the 
bottom of the filter and a maximum at two-thirds height ensuring that maximum moment release 
occurs within the upper portion of the fault (consistent with Fialko et al. 2005). One realization of a 
slip model generated from this algorithm is illustrated in Fig. 2.2. If the average of the PSDs of the slip 
in each segment layer along length and depth decays with increasing wave number as a power law 
with decay coefficient between 2.0 and 4.0 (Fig. 2.3), the slip distribution is accepted, else it is 
rejected. 
 

 
 

Figure 2.2. Stochastic slip realization for a Mw7.9 earthquake generated using the recursive division algorithm. 
 

 
Figure 2.3. Power spectral density (PSD) of the slip shown in Fig. 2.2. along strike (left) and along dip (right). 

 
2.2. Rupture-speed (Vr) 
 
Laboratory earthquakes (Lu et al. 2010) show the influence of initial fault shear stress on rupture 
speed. Initial shear stress, in case of a strike-slip fault, can be determined using the orientation (!) 
between maximum principal stress (!!) and fault strike.  Evaluating ! along the fault forms an 
important step in estimating the initial shear stress (!) and in further determining the rupture speed 
distribution for a source model. 
 
2.2.1 Calculating ! the stresses acting on the fault 
The World Stress Map (WSM) project (http://www.world-stress-map.org) compiles the azimuth of 
maximum principal stress (!!) at various near-fault locations, along with an estimate of measurement 
error (!!) depending upon the quality of data. To account for this error, we add a random error to the 
reported estimate (!!!) of !!  as:  

!  ! = !!! ± 0 ≤ !"#$%&  !"#$%&   ≤ 1   !!      (2.2) 
 
Finally, the orientation of !! relative to the fault can be written as: 
 

! = 180! − ! −   !!          (2.3) 
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where ! is the strike at the closest point on the fault. These near-fault data locations are coalesced into 
clusters based on their spatial distribution. We assume !  at each cluster location to be characterized by 
a lognormal distribution with mean equal to the arithmetic mean of ! for all the locations within the 
cluster and standard deviation calculated from the cluster with the highest number of WSM data 
points. We further assume that ! is constant along the depth of the fault i.e. rupture speed varies along 
fault length alone. All the sub-events on the fault that lie in the zone tributary to a data cluster are 
assigned randomized !s drawn from the corresponding lognormal distribution. Within each of these 
tributary zones, ! is assumed to be constant for all sub-events over a distance less than or equal to the 
seismogenic depth “d” i.e., the same randomly generated !  is assigned to all these sub-events. Initial 
shear stress (!) on the sub-event is then calculated using Eqns. 2.4. & 2.5., assuming ambient stresses 
in the crust adjacent to the fault are maintained by the frictional stability of small, high-friction 
fractures, and that fluid pressures in the crust are hydrostatic (Townend and Zoback 2000). 
 

! =    !!!  !!
!

≃ !!!";             ! =   !!!";  Δ! = !!!(!  !  !)

!!!!!
                   (2.4) 

 
! =   !!

!
sin 2!;  !! =   !   −   ! −   

!!
!
cos 2!      (2.5) 

  
where  !  is the hydrostatic pressure, ! & Δ! are the mean and differential stress, respectively, !!   & 
!!   are the density of rock and water, respectively, ! & !! are the initial shear and normal stress acting 
on the sub-event, and, g is the acceleration due to gravity. In our algorithm, z corresponds to half the 
seismogenic depth and !! (= 0.6) is the static friction coefficient for rock satisfying Coulomb 
frictional failure criterion. 
 
2.2.2 Assigning rupture speeds 
Loading factor (S) at the location of a given sub-event on the fault is calculated as: 
 

!! =   !!  !!;  !! =   !!   !!         (2.6) 
 

! =    !!!  !!
!!!!

            (2.7) 
 
where !!(=0.6) & !!(=0.1) are the static and dynamic friction coefficients, respectively, and, !! & !! 
are the static and dynamic friction strength of the segment, respectively. If S ≥	 1.77, rupture is 
assumed to propagate at sub-Rayleigh speeds (Andrews 1976) and a rupture speed of 0.87Vs is 
assigned for all segments along depth at that location. If S ≤	 1.77, it is assumed that stress conditions 
exist for rupture to transition to super-shear speeds and a critical crack length (Lc) and transition length 
(Lt) are calculated as (Rosakis et al. 2007): 
 

!! =   
!  (!!!  !!)!!
!(!!!)(!!!!)!

 ;  f(S)   =   9.8  (1.77  –   !)!!     (2.8) 
 
!! =   !!!(!)                       (2.9) 

 
where do is a characteristic slip weakening distance chosen randomly from a uniform distribution 
between 0.5 & 1.0 (Ide and Takeo 1997), and  !  (=0.25) is the Poisson ratio. If Lt is less than along 
length distance from hypocenter to the sub-event location, a local rupture speed of 1.67VS along depth 
is assigned, else rupture speed is set as 0.87VS. 
 
2.3. Slip Velocity-Time Function 
 
We fit isosceles triangles to the slip velocity-time functions from a catalogue of pulse-like laboratory 
earthquakes using an L1 norm (see Fig. 2.4.). We develop a lognormal distribution to characterize the 



slip to rise-time ratios obtained from this minimization for all available laboratory earthquakes. For a 
given slip model, we generate a realization of slip to rise-time ratio using this distribution. Since fault 
slip is known within each sub-event, we can compute the rise-time and hence the slip velocity within 
each sub-event. If the maximum rise time in the model exceeds Tr,max, we discard this slip velocity 
distribution across the fault and generate a new realization for slip to rise-time ratio. Tr,max is the 
maximum rise-time in finite-source inversions from past earthquakes approximated from Fig. 2.4. by:  
 

0.5!!,!"# = 1.5Mw – 8.3                   (2.10) 
                  

 
 

Figure 2.4. (left) Slip velocity plotted as a function of time for a laboratory earthquake; (right) Maximum rise 
time in source models plotted as a function of magnitude as found in finite-source inversions of past earthquakes. 
 
 
3. APPLICATION TO THE SAN ANDREAS FAULT  
 
Using the recursive division algorithm, we generate a suite of five stochastic source model realizations 
for a Mw7.9 earthquake along the Southern San Andreas Fault. Each source realization is placed at 5 
locations from Parkfield to Bombay Beach spaced uniformly along the fault and 10 rupture scenarios 
are generated using two rupture propagation directions (north-to-south and south-to-north; note that 
the slip distribution is also reversed). A total of 50 unilaterally propagating earthquakes (5 models x 5 
locations x 2 directivities) are generated. Using SPECFEM3D (Komatitsch and Tromp 1999), an open 
source wave propagation package based on the spectral element method, 3-component waveforms are 
computed at 636 stations in Southern California for all the scenarios. The waveforms are low-pass 
filtered with a corner at 2 seconds [the underlying SCEC CVM-H wave speed model (Plesch et al. 
2011) is capable of resolving waves with periods longer than 2s only]. To ensure that the source 
models generated by the recursive division algorithm are credible, we make statistical comparisons of  
 

 
 

Figure 3.1. Slip model for 2002, Mw7.9 Denali earthquake by Krishnan et al. (2006). 
 
the peak ground velocities (PGV) generated by these models against the peak velocities generated by a 
finite-source inversion of an earthquake with equivalent magnitude. We chose a finite-source model of 
the 2002 Mw7.9 Denali earthquake (see Fig. 3.1.) by Krishnan et al. (2006) for this exercise. We 
compute 3-component synthetics at the 636 Southern California sites for the 10 rupture scenarios (5 
locations x 2 rupture directions) using this model as well. From the stochastic model set, we select the 
“median” model for the validation exercise as follows: 
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i. For each stochastic source realization, we compute the median PGV for the two horizontal 
components of synthetic ground motion waveforms at the 636 sites from each of the 10 
rupture scenarios (5 locations x 2 rupture directions). 

ii. We compute the median of the 10 values from (i) for each stochastic source realization. 
These are shown plotted as solid lines in Fig. 3.2. Simultaneously, we compute the median 
PGV from the combined suite of 50 earthquakes (10 rupture scenarios x 5 stochastic 
source models). This median ground motion is shown plotted as dashed lines in Fig. 3.2. 

iii. The source realization whose median PGV values are closest to the median PGV from (iii) 
is considered the “median” model and the stochastic features of the ground motions from 
this model are used in the validation exercise. 

 

 

 
 

Figure 3.2. Median PGV for 10 rupture scenarios using each of the 5 stochastic source realizations compared 
against that from all 50 earthquakes. The earthquakes are of Mw7.9 rupturing the San Andreas fault at 5 different 

locations. The synthetic ground motions are computed at 636 sites in Southern California. 
 

 
Figure 3.3. Peak ground velocity (m/s) maps of the (left) east-west and (right) north-south components for the 
(top)“median” model and (bottom) the Denali model located midway between Parkfield and Bombay Beach. 
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The peak ground velocity maps computed for location “3” (approximately mid-way between Parkfield 
and Bombay beach) using the “median” model (Fig. 2.2.) and the Denali model (Fig. 3.1.) are shown 
in Fig. 3.3. Since the large slip asperity in the Denali model is further southeast compared to the 
“median” model, the ground motions from the Denali model are far more intense in the San Gabriel 
Valley (which is further east) than in the Los Angeles Basin. However, the overall intensities of 
ground motion are not vastly different. This can be seen in the statistical comparisons shown in Fig. 
3.4. Plotted there are the histograms of PGV from four of the five rupture locations for the “median” 
model and compared against that from the Denali model. 

 
 

 
 

Figure 3.4. Histograms of peak ground velocities of east-west component at 636 stations in Southern California 
using the “median” source model and the Denali model, rupturing at 4 different locations between Parkfield and 

Bombay Beach, and propagating north-to-south. Insets show the corresponding lognormal distribution fits. 
 
 

4. ONGOING WORK 
 
Work is ongoing to use this source model generation algorithm to create stochastic source models for earthquake 
magnitudes in the range 6.0-8.0 on southern San Andreas Fault. The resulting synthetic waveforms from these 
models will be used in performing non-linear dynamic analysis of 18-storey moment frame and 40-storey dual 
frame buildings across 636 sites in Southern California thus paving way for a probabilistic seismic risk analysis.  
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