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SUMMARY:  
The research illustrates the use of Artificial Neural Networks (ANN) in the general framework of a performance-
based seismic vulnerability evaluation for earth retaining structures. A fully nonlinear finite difference software 
is used to perform extensive time histories analyses of a prototype configuration for different earthquake 
intensity levels. Model input parameters are sampled according to their statistical distribution, and the seismic 
input is also considered as a random variable. With this process, a large dataset of virtual realizations of the 
behaviour of different configurations under recorded ground motions is obtained. The dataset is used to create 
ANNs capable of finding the unknown nonlinear relationship between seismic and geotechnical input data 
versus the expected performance of the facility. Once the ANN is calibrated, it can be effectively used as a 
“closed-form solution” to predict the seismic demand on the structure. Finally, fragility curves are systematically 
derived by applying Monte Carlo simulation on the obtained relationship. 
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1. INTRODUCTION 
Blank line 11 pt 
A port infrastructure is a system that features: i) wharves (for berthing); ii) cranes (for 
loading/unloading operations); and iii) apron and internal ways (for allowing wheeled vehicles to 
reach the waterfront zone). This study is focused on assessing the seismic vulnerability of a specific 
quay wall typology, the blockwork construction, which is the oldest configuration of wharf structures 
around the world. The proposed methodology is also applied to an important Italian facility, the Port 
of Gioia Tauro, located in an active seismic region. 
 
1.1. Case Study Description 
Blank line 11 pt 
The blockwork quaywall configuration used in this work as prototype structure consists of a set of five 
blocks, each with a height of 2.5 m, for a total height of 12.5 m, and a width from 8 m to 4 m, 
decreasing of 1 m for each level (Figure 1). This represents a typical realization technique widely used 
in Mediterranean Countries. 
 

 
 

Figure 1. General model of the blockwork wharf analyzed in this study 



Blank line 11 pt 
The geotechnical characterization at the site (Scarpelli and Piersigilli, 2005) revealed that the soils are 
essentially cohesionless, with typical properties reported in Table 1.1. 

 
Table 1.1. Soil properties assumed for the different stratigraphies based on (Scarpelli and Piersigilli, 2005) 

Lithological unit  Depth [m] γ [kN/m3] c’ [N/m2] φ’ [°] E’ [kN/m2] 

Sand with gravel 0-5 17 0 30 30000 
Silty sand 5-12.5 19 0 30 50000 
Coarse sand 12.5 18 0 36 50000 
Fine sand >12.5 19 0 36 80000 

 
Uniform Hazard Spectrum (UHS) and deaggregation at the site were obtained from previous work 
done by the Italian Institute of Geophysics and Volcanology (INGV). The UHS for different 
probabilities of exceedance in 50 years are illustrated in Figure 2. For each return period, a set of 
seven spectrum compatible accelerograms has then been selected with the software ASCONA 
(Corigliano et al., 2012). 
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Figure 2. Uniform Hazard Response Spectra of pseudo-accelerations at the site for different probabilities 
of exceedance (from 2% to 81%) in 50 years 
 
1.2. Numerical Modelling 
 
The seismic response of the blockwork wharf was investigated by means of an advanced software, 
capable of modelling the nonlinear behaviour of geotechnical systems. FLAC 2D (Itasca, 2000) is a 
two-dimensional explicit finite difference program suitable for geotechnical engineering applications. 
It allows simulating the behaviour of structures interacting with soils, rock or other geomaterials that 
may undergo plastic deformation when exceeding their yield stresses. A large portion of the domain 
surrounding the wharf has been included in the model, in order to reproduce free-field conditions far 
away from the wall (Figure 3). These are further guaranteed by the presence of purposely-designed 
absorbing boundaries. The total mesh dimensions are 90 m by 42.5 m. In the vertical dimension, this 
allows to model the entire backfill and 30 m of the foundation soil. In the horizontal direction, the soil 
in front of the toe of the wall is modelled for a length of 26 m, while the backfill is modelled for a 
length of 56 m. A suitable grid is also selected to propagate the frequencies of interest. 
 
After defining the geometry of the model, the materials have been assigned with a staged construction 
of the wall and with the geostatic stress initialization of the soil deposit. A hysteretic, Mohr-Coulomb 
constitutive model is used. The Seed et al. (1986) modulus reduction curve for sand has been used in 
order to take into account the soil nonlinear behaviour before yielding. A low amount of Rayleigh 
viscous damping, 0.2 %, centred at a frequency of 5 Hz (close to the fundamental frequency of the 
system) has also been added to eliminate high frequency noise and to simulate energy losses of the soil 
undergoing low-strain cyclic excitations. Lysmer and Kuhlemeyer (1969) viscous boundary to 
reproduce an absorbing (quiet) boundary were used at the bottom of the model, while free field 
conditions were assumed along the vertical boundaries. The hydrodynamic effects exerted by the 



water pool on the seaward face of the wharf are addressed in the model using Westergaard’s added 
masses (Westergaard, 1933). The dynamic pore pressure increment, together with shear strength 
decrease under seismic excitation, has been simulated with the Finn model (Martin et al., 1975) using 
the Byrne formulation (1991). For further information on the adopted numerical simulation, the 
interested reader can refer to (Calabrese and Lai, 2012). 
 

 
 

Figure 3. Model for seismic analysis of blockwork wharf structure with assigned boundary conditions 
 
1.3 Performance Parameters 
 
The damage criteria given by the International Navigation Association (PIANC, 2001) were used in 
order to assess the performance of the analyzed prototype configurations. Two damage mechanisms 
were considered: horizontal sliding and overturning failures. Therefore, the Engineering Demand 
Parameters (EDP) monitored after the numerical analyses were the normalized residual displacement 
on top of the quay wall (d/H) and the residual tilting towards the sea. PIANC (2001) also recommends 
acceptable levels of damage (Table 1.2), for different class of structures (according to their 
importance: from critical/strategic ports to small, easily restorable, facilities). 
 
Table 1.2. Acceptable level of damage in performance-based evaluations adapted from PIANC (2001) 

Level of damage Structural Operational 
Degree I: Minor or no damage Little or no loss of 
Serviceable   serviceability 
Degree II: Controlled damage Short term loss of 
Repairable   serviceability 
Degree III: Extensive damage in Long-term or complete 
Near collapse near collapse loss of serviceability 
Degree IV: Complete loss of  Complete loss of  
Collapse structure serviceability 

 
For blockwork wharves, the minimum EDP requirements for the damage levels listed in the table 
above are summarized in Table 1.3. 
 
Table 1.3. Minimum requirements for damage criteria for gravity quay walls from PIANC (2001) 

 Degree I Degree II Degree III Degree IV 
 Normalized RHD <1.5% 1.5~5% 5~10% >10% 
 Residual tilting <3° 3~5° 5~8° >8° 

 
 



2. USE OF AN ARTIFICIAL NEURAL NETWORK AS DEMAND EVALUATOR 
 
2.1. Introduction to Artificial Neural Networks 
 
An Artificial Neural Network (ANN) can be described as a massively parallel, interconnected network 
of basic computing elements that demonstrate information-processing characteristics similar to several 
hypothesized models of the functioning of the brain. Analogously to biological nervous systems, 
ANNs are in fact composed by simple elements operating in parallel. These elements are the “nodes” 
of the network, and each of them is associated with a specific “weight” and a specific “bias”. The 
nodes are divided into several levels: input, hidden and output layers. The connections between the 
nodes are provided by particular “transfer functions” (also called “activation functions”), defining the 
decision that takes place within each node. Figure 4 represents the similarity between a schematized 
representation of a biological nervous system versus a topological depiction of an ANN. 
 

 
 

Figure 4. On the left, a schematized representation of a biological neuron based on (Hajela and Berke, 
1992); on the right a topological depiction of an ANN 
 
Artificial Neural Networks have nowadays several applications, as for instance in regression analyses, 
data clustering, data compression techniques, mapping rules. When solving complicated problems, an 
ANN can be particularly useful to find the unknown nonlinear relationship between a set of input data 
and a set of output values. In fact, while in a traditional multivariate regression analysis the type of the 
fitting function is assumed, with an ANN the type of interpolating function is not a priori assumed, 
being an outcome of the training process of the network. 
 
For the above reason, an ANN is used in this study for performing the regression analysis linking the 
seismic, geotechnical and structural information of the wharf model to its expected seismic 
performance. This is evaluated according to the EDP thresholds already described in Section 1.3 
(Table 1.2 and Table 1.3). 
 
2.2. Obtaining the Dataset to Calibrate the ANN 
 
The numerical FLAC model illustrated in Section 1.2 was used to perform a large number of 
parametric analyses. In these, all the input parameters are changed, and several natural ground motion 
records are utilized to perform dynamic time history analyses. The following six geotechnical 
parameters are deemed to be influential on the response of the model: i) the friction angle of the 
backfill soil; ii) the friction angle of the foundation soil; iii) the friction angle of the interfaces between 
the blocks and the backfill soil; iv) the friction angle of the interface between the base of the block 
with the underlying foundation soil; v) the small-strain shear modulus of the foundation soil; vi) and 
the small-strain shear modulus of the backfill soil. The seismic intensity was taken into account noting 
the Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), and Arias Intensity (IA) of the 
records used for the numerical simulations. The choice of such Intensity Measures (IMs) was adopted 
recalling the well know limitations of the PGA as an effective predictor of the seismic demand. 
 



Nine sets of seven spectrum-compatible records were used, one for each of the probabilities of 
exceedance in 50 years indicated in Figure 2. The probabilities correspond to return periods ranging 
from 30 to 2457 years. Within each return period, uniform distribution is associated with the records. 
The uncertainty in the geotechnical properties was addressed by considering literature distributions of 
their values, as reported in (Jones et al., 2002). Friction angles were therefore modelled with a normal 
distribution and a Coefficient of Variation (CoV) of 9%. The shear moduli, on the other hand, were 
modelled with a lognormal distribution and a CoV of 12%. 
 
A MATLAB (The MathWorks, 2007) script was then created to generate the random geotechnical 
stratigraphies in FLAC and to make the correspondence with a randomly selected ground motion.  
 
Nonlinear dynamic analyses were performed on such models and the output stored to be successively 
accessed. The entire process was repeated for different foundation’s length, more precisely for 8 m, 11 
m and 14 m, corresponding to base-length/height ratios around 0.64, 0.88 and 1.12. Thirty input files 
were generated for each intensity level, and the process was repeated for each geometrical 
configuration. Consequently, 810 time history analyses were performed. This required a large amount 
of computational time, approximately 1000 hours. 
 
2.3. Architecture of the ANN 
 
A feed-forward ANN model was used, together with the back-propagation algorithm for the training.  
 
The term backpropagation is an abbreviation for “backwards propagation of errors”, that is effective in 
summarizing the process that is implemented. In fact, the basic idea is that each hidden and output 
neuron processes its inputs by multiplying each input by its weight, summing the product and then 
passing the sum through a nonlinear transfer function to produce a result. The neural network learns 
by modifying the weights of the neurons in response to the errors between the actual output values and 
the target output values. This is carried out through a gradient descent on the sum of squares of the 
errors for all the training patterns. The process requires several iterations, whose number can vary 
depending on the adopted gradient descent algorithm. The single iteration is called a “cycle” or 
“epoch”. Training is carried out by repeatedly presenting the entire set of training patterns (with the 
weights updated at the end of each cycle) until the error over all the training patterns is minimized and 
within the tolerance specified for the problem. Such type of network is defined as “feed-forward”, as 
there is no feedback, i.e. no corrections, on the single loop. 
 
An ANN model with 10 input nodes, a single hidden layer of 30 nodes, and 2 output nodes was 
adopted. The input nodes were the 6 geotechnical quantities and the 3 IMs listed in Section 2.2, as 
well as the geometrical aspect ratio of the wharf (W/H). The number of nodes in the hidden layer was 
found after a trial-and-error process, since it provided stable solutions without affecting the training 
time. The two output nodes give the RHD and the tilt of the quay wall. 
  
The hidden layer was characterized with a tan-sigmoid transfer function (Figure 5, a), and the output 
layer with a linear one (Figure 5, b). 
 

 
 

Figure 5. Tan-sigmoid transfer function (a); linear transfer function (b) (Demuth and Beale, 2004) 



The topology of the ANN is represented in Figure 6 . In the illustration, LW is the weight matrix of the 
input vector, IW is the weight matrix of the output vector, K is the input matrix, b1 and b2 are the bias 
matrices. 
 

 

 
 

Figure 6. Architecture of the ANN used in this study (Demuth and Beale, 2004) 
 
2.4. Training the ANN  
 
The Levenberg-Marquardt algorithm was used for training. In addition, in order to improve 
generalization and to avoid overfitting, an early-stopping technique was also adopted. With this 
approach, the available data is divided into three subsets. The first subset is the training set, which is 
used for computing the gradient and updating the network weights and biases. The second subset is the 
validation set. The error on the validation set is monitored during the training process. The validation 
error will normally decrease during the initial phase of training, as does the training set error. 
However, when the network begins to overfit the data, the error in the validation set will typically 
begin to rise. When the validation error increases for a specific number of iterations, the training is 
stopped, and the weights and biases at the minimum of the validation error are returned.  
 
Therefore, of the 810 known input-output realizations obtained with the numerical simulations, the 
50% of the set was used to calibrate the ANN, the 25% to validate it, and the remaining 25% for 
testing. Figure 7 graphically illustrates the correlation obtained on the testing set after the training of 
the network.  
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Figure 7. Graphical representation of the correlation obtained on the testing set after the training process 
 
The matrices involved in the solution algorithm are stored. In this way, the seismic response of a 
wharf configuration with any input parameters (provided that these fall in the range used for 
determining the training set) can be determined with an algebraic “closed-form” solution of the type: 
 



  1 2tan ( )T LW sig IW K B B= ⋅ ⋅ + +
                                 (2.1) 

 
where LW is the weight matrix of the input matrix used to calibrate the ANN (hidden x input), IW is 
the weight matrix of the output vector used to calibrate the ANN (hidden x output), K is the input 
matrix (used to generate the solution), B1 is the bias matrix of the hidden layer level, and B2 is the bias 
of the output layer level.  
 
Knowing all the above matrices, the relationship in Equation (2.1) can be regarded as a “metamodel”. 
In other words, it can be used as a simple tool to estimate the output of a complicated problem.  
 
 
3. DERIVATION OF FRAGILITY CURVES WITH ANN 
 
Fragility curves represent the conditional probability, for a particular construction, of exceeding a 
defined level of damage. The probability is conditional on a given level of ground motion. Several 
references illustrate the fundamentals of fragility curves, amongst them Rota (2007) and Shinozuka et 
al. (2000). Even if the discussion of the proposed methodology is limited to these particular structures, 
it can be easily applicable to any other construction typology. The basic idea is to use the closed form 
solution obtained with the application of the ANN to generate a large number of simulations and to 
assess for each of them the reached damage state (DS). This knowledge is successively used to 
generate the fragility curves with a suitable regression analysis.  
 
The main advantage of such method is a significant reduction in computational time, because no more 
nonlinear time history analyses are required once the network is calibrated. In the specific case, the 
FLAC model is used only at an initial stage to obtain data to train and validate the ANN. The classical 
alternative way would be to perform MCS directly on the input of the FLAC model, and then running 
the analyses. Since MCS requires at least thousands of analyses, and each time history analysis in 
FLAC lasts some hours, it is evident that this approach would be extremely computationally 
expensive. In fact, thousands of computing hours would be needed to perform the MCS. Conversely, 
the ANN approach is incomparably faster, since the deterministic model that is applied every time is 
just an algebraic expression. In this way, MCS can be run only in few minutes. 
 
3.1. Uncertainties Considered in the Fragility Curves 
 
3.1.1. Geotechnical Parameters 
Each model geotechnical parameter (i.e. soil friction angles, low-strain shear moduli, friction angles at 
the interfaces) was modelled as a random variable with its specific distribution (see also Section 2.2). 
Once the random variables distributions were defined for what concerns the geotechnical parameters, 
an appropriate sampling was adopted in order to consider the different configurations of the wharf 
model.  
 
3.1.2. Ground Motion Characteristics  
Fragility curves can be developed for several intensity measures. Generally speaking, in structural 
earthquake engineering the most common choices are the PGA and the spectral acceleration at the 
fundamental period of the structure, Sa(T1). Also in geotechnical earthquake engineering the PGA is 
one of the preferred IMs for the construction of fragility curves, together with the PGV, PGD and AI. 
The ANN developed in this study characterizes the ground motion with three significant parameters: 
PGA, PGV, and IA. Hence, the probability of failure expressed by the fragility curve was conditioned 
on the PGA. At the same time, the other two parameters, PGV and IA, are also treated as random 
variables in order to consider the record-to-record variability. This was performed by defining the joint 
probability distribution (pdf) of PGA and PGV, as well as of PGA and IA. Recent studies, e.g. (Baker, 
2007), have shown that the hypothesis of joint lognormal distribution between PGA and PGV and 
PGA and IA cannot be rejected. Therefore, a joint normal distribution was established between the 
logarithms of PGA and PGV and between the logarithms of PGA and IA. In the following discussion 



the analytical formulas will only be given for the PGA and PGV distribution, however identical steps 
and logic also apply for PGA and IA. 
 
Having defined a lognormal distribution between the probabilities of PGA and PGV, random variables 
indicated herein as A  and V for conciseness, the logarithmic mean Aλ  and logarithmic standard 
deviation Aζ  are assigned for A , as well as Vλ  and Vζ   for V : 
 

 
 
                 

 (3.1) 
 

 
      

  
where ρ  is the correlation coefficient between A  and V . 
 
The joint pdf between PGA and PGV used in this work (Figure 8) was therefore obtained based on 
their marginal distributions, using a correlation coefficient of 0.65 from existing literature, e.g. (Rathje 
and Saygili, 2008). For what concerns the marginal distributions, these were found from the hazard 
curves as, for instance, in Lee and Mosalam (2005).  
 
 

  
 

Figure 8. Joint lognormal distribution of PGA and PGV used in this study (a); and contour lines of the 
joint pdf, with superimposed random realizations of PGV conditional to a given PGA level. 
 
A similar approach was also used in determining the joint pdf of PGA and IA. A complete description 
of the procedure can be found in (Calabrese and Lai, 2012). 
 
3.2. Generation of Fragility Curves 
 
Having defined the statistical distributions of all the input variables, the ANN closed-form solution 
was used in conjunction with MCS, to obtain a very large set of expected responses. For each PGA 
level a sample of 1000 random realizations (input-output) was obtained, and the computed RHD and 
tilt were stored and compared with the damage thresholds defined by PIANC (2001).  
 
For each Damage State (DS) the number of failures is recorded during the MCS, so that the 
observational frequency P̂  is easily obtained as the number of failure events fN  over the total 
number of simulations N , Equation (3.2): 
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where ( )f iI x  is a counter of the number of realizations, and its value can be either 1 or 0. 
 
In this study, the classical assumption that the shape of the fragility function is well described by a 
lognormal CDF, e.g. (Shinozuka et al., 2000), was adopted:  
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where F(x) is the lognormal CDF, erfc is the error function, λ  and  ζ  are the lognormal distribution 
parameters. Therefore, the fragility function that has to be derived is completely described once λ  and  
ζ  are found. Based on Rota (2007), these parameters were found using a nonlinear least-square 
optimization algorithm and a lognormal CDF function to fit the data obtained with Equation (3.2). 

 
Fragility curves were obtained for both mechanisms: horizontal sliding and overturning failure, i.e. for 
RHD and residual tilt. Three geometric configurations were also considered, respectively for W/H 
ratios of 0.64, 0.88 and 1.12. The entire process was followed also using results from an ANN 
calibrated on analyses were liquefaction occurrence was prevented. This was modelled in FLAC by 
disabling the dynamic pore pressure increment and the shear strength decrease under seismic 
excitation. In this way, fragility curves were derived for both stable and liquefiable soils. 
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Figure 9. Comparison of RHD fragility curves for two different configurations (base width/height ratios, 
W/H) without (left side) and with (right side) liquefaction modelling. From the left top to the right down, 
are represented: a) W/H=0.64, without liquefaction; a’) W/H=0.64, with liquefaction; b) W/H=1.12, 
without liquefaction; b’) W/H=1.12, with liquefaction. The considered DS are those of Table 1.2. The 
marks on the plots represent the observational cumulative failure frequencies obtained with the ANN.  
 



Figure 9 represents the RHD fragility curves for both stable and liquefiable soils conditions, for all 
DS, and for W/H ratios of 0.64 and 1.12. The interested reader can find the curves for W/H=0.88 and 
the ones for tilt in Calabrese and Lai (2012), together with several comparisons between the curves of 
each considered configuration at every DS.  
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