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SUMMARY: 
Variability of soil properties is a major source of uncertainty in assessing the seismic response of geotechnical 
systems. This study presents a probabilistic methodology to evaluate the seismic response of earth dams. A 
sensitivity analysis is performed by means of Tornado diagrams. Two-dimensional, anisotropic, cross-correlated 
random fields are generated based on a specific marginal distribution function, auto-correlation, and cross-
correlation coefficient. Nonlinear time-history analyses are then performed using an advanced finite difference 
software (FLAC 2D). The study is performed using Monte Carlo simulations that allowed to estimate the mean 
and the standard deviation of the maximum crest settlement. The statistical response is compared with results of 
a deterministic analysis in which the soil is assumed homogeneous. This research will provide insight into the 
implementation of stochastic analyses of geotechnical systems, illustrating the importance of considering the 
spatial variability of soil properties when analyzing earth dams subjected to earthquake loading. 
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1. INTRODUCTION 
 
It is well known that soil properties vary in space even within otherwise homogeneous layers. This 
spatial variability is highly dependent on soil type or the method of soil deposition or geological 
formation. Nevertheless, many geotechnical analyses adopt a deterministic approach based on a single 
set of soil parameters applied to each distinct layer. In recent years, the effect of inherent random 
variation of soil properties has received considerable attention. Griffiths and Fenton (2002), Fenton 
and Griffiths (2003) and Popescu et al. (2005) examined the response of shallow foundations; Haldar 
and Babu (2007) analyzed the response of a deep foundation under vertical load; Paice et al. (1996) 
studied settlements of foundations on elastic soil; Griffiths and Fenton (2000) studied slope stability; 
Popescu et al. (2005, 1997) and Koutsourelakis et al. (2002) studied seismically-induced soil 
liquefaction whereas Kim et al. [2007] reported an update on emergent research related to variability 
in soil properties. The spatial fluctuation of a parameter cannot be accounted for if the parameter is 
modelled only using a random variable. Random field theory and/or geostatistics are needed if a more 
accurate representation of the spatial variability of this parameter is desired in the analysis. 
 
In this study, a numerical procedure for a probabilistic analysis that considers the spatial variability of 
soil properties is presented in a framework related to the assessment of the seismic response of an 
earth dam. First of all, a sensitivity analysis by means of Tornado diagrams was performed. Results 
were used to determine the input parameters that influence the response the most in order to be 
modelled as random fields. Two-dimensional, anisotropic, cross-correlated random fields are 
generated based on a specific marginal distribution function, auto-correlation, and cross-correlation 
coefficient. Subsequently, nonlinear dynamic time-history analyses are performed using an advanced 
finite difference numerical software, FLAC 2D (Itasca 2000).  
 
 



The study is performed using Monte Carlo simulations and allowed to estimate the mean and the 
standard deviation of the maximum crest settlement, which is the selected engineering demand 
parameter. The statistical response is finally compared with the results of a deterministic analysis in 
which the soil is assumed homogeneous.  
 
2. SENSITIVITY ANALYSIS 
 
Reduction of the number of uncertain parameters cuts down the computational effort and cost. One 
way of doing this is to identify those parameters with associated ranges of uncertainty that lead to 
relatively insignificant variability in the response, and then treating these as deterministic parameters 
by fixing their values at their best estimate, such as the expected value. In order to rank uncertain 
parameters according to their sensitivity to the desired response parameters, there are various methods 
such as Tornado diagram analysis, FOSM analysis and Monte Carlo Simulations (MCS). The latter, 
which is computationally demanding due to the requirement of a large number of simulations, is not 
used in this part of the study. Instead, Tornado diagram have been used due to their simplicity and 
efficiency to assess sensitivity of uncertain parameters. 
 
2.1. Tornado Diagrams 
 
The procedure for constructing a tornado diagram is based on implementing the following steps (Lee 
and Mosalam, 2005): 
1. Determine 10%, 50% and 90% fractiles of all Random Variables (RVs); 
2. Perform dynamic analysis with the set of 7 real-spectrum-compatible records selected for 101, 475 

and 2475 years return period (21 analysis) setting all RVs at their median values; 
3. Select the median Ground Motion (GM) for each Engineering Demand Parameter (EDP); 
4. Using the median GM of Tr=475 years, run each RV other than ground motion for 10% and 90% 

fractiles. In this case, seven runs (one for each RV considered) with 10% fractile values plus seven 
runs with 90% fractile values were performed. 

 
2.2. Definition of seismic input and distribution of input parameters 
 
Suites of real ground motion records selected for the 101, 475 and 2475 years return period (39%, 
10%, and 2% probability of exceedance in 50 years) were used respectively as lower, mean and upper 
bound, to carry out a series of dynamic analyses of the dam with the soil properties fixed at their best 
estimate (mean values). Further details regarding the seismic hazard at the site and the selection of the 
records can be found in Sanchez (2011). Fig. 2.1 shows the set of 7 real selected records that were 
used for the 475 years return period. 

Once a lower and upper bound has been selected for the Intensity Measure (IM), in this case the Peak 
Ground Acceleration (PGA), the variables to be considered as randomly distributed can be perturbated 
for their use in sensitivity analyses. Different fractiles values are chosen as input for Tornado analyses 
as summarized in Table 2.1 and Table 2.2. 
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Figure 2.1 Suite of 7 selected real accelerograms for the 475 years return period 
 
Realistic probability distributions were assumed for the soil strength parameters such as friction angle 
[φ’], cohesion [c’], and small-strain shear modulus [G] of the embankment and foundation soil. A 
normal probability distribution was used for the friction angle and cohesion while a lognormal 
probability distribution was assumed for the small-strain shear modulus of the embankment and of the 
foundation material. Such distributions were used based on similar studies found in the literature (Na 
et al., 2008), from which the Coefficient of Variations (CoVs) were also determined. 

Table 2.1. Distributions adopted for the strength random variables and fractile values used in sensitivity analysis 
(Table 1 of 2). 

 φ’ 
embankment 

[°] 

φ’   
core      
[°] 

φ’ 
foundation 

[°] 

Cohesion 
embankment 

[Pa] 

Cohesion 
core 
[Pa] 

Cohesion 
foundation 

[Pa] 

Distrib. Normal Normal Normal Normal Normal Normal 

Xμ 24 30 35 30000 40000 50000 

CoV % 9 9 9 40 40 40 

Xμ-σ 21.84 27.3 31.85 18000 24000 30000 

Xμ+σ 26.16 32.7 38.18 42000 56000 70000 

X10% 21.23 26.54 30.96 14620 19500 24370 

X90% 26.77 33.46 39.04 45380 60500 75630 

 
Table 2.2. Distributions adopted for the stiffness random variables and fractile values used in sensitivity analysis 
(Table 2 of 2). 

 G embankment [MPa] G foundation [MPa] 

Distrib. Lognormal Lognormal 

Xμ 86 441 

CoV % 12 12 

Xμ-σ 75.6 375 

Xμ+σ 96.3 510 

X10% 73.2 381 

X90% 99.5 494 
 



2.3. Results of Sensitivity Analysis 
 
The Tornado diagram corresponding to the residual vertical displacement at the top of the crest of the 
dam is shown in Fig.2.2. In this chart, the vertical line (also called “reference line”) represents the 
response of the dam computed exclusively with the mean values. The swing corresponding to the 
intensity measure (PGA) is generated by plotting the EDP obtained with the median input of each set. 
 
It can be seen that PGA dominates the variability. Cohesion of the embankment, together with ground 
motion, induces an important swing, meaning that these three variables represent the highest source of 
uncertainty. The high variability of the response due to the embankment cohesion can be attributed to 
the large CoV used for this parameter (40%). All other random variables have a very small influence. 
For the example study at hand, it turns out that the effective friction angle and the cohesion of the 
various parts of the embankment are the most significant geotechnical parameters in terms of their 
effect on the computed response. Therefore, they were modelled as random variables. 
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Figure 2.2 Tornado diagram of the vertical residual displacement (crest settlement) at the top of dam 
 
 
3. RANDOM FIELD MODEL 
 
A random field H(x,θ) is a collection of random variables associated with a continuous index 

nRx ⊆Ω∈ , where Θ∈θ is the coordinate in the outcome space. The field is completely defined by 
its mean μ(x), variance σ2(x) and autocorrelation function ρ (x,x’). A random field H is distributed 
according to H~N(x, Σ) where Σ is the variance-covariance matrix. The matrix Σ is generated with the 
autocorrelation matrix, for this study an exponential autocorrelation function is used and different 
autocorrelation distances in the vertical and horizontal directions are used as follows: 
 

( )
x x y y

x y exp
h v

' '
,

⎛ ⎞− −
ρ = − −⎜ ⎟⎜ ⎟θ θ⎝ ⎠   (3.1) 

  
where θh and θv are autocorrelation distances in the horizontal and vertical direction respectively. The 
correlation distance θh and θv are used to prepare the correlation matrix, whereas the CoV is used to 
determine the standard deviation of the input variables. The value of lag distance |x| and |y| is the 
center-to-center distance of two consecutive grid zones (from the FLAC model). Once Σ is 
established, it is decomposed using Cholesky decomposition technique. The correlated standard 
normal random field is obtained using Eq.3.2 where G(x) is the multiplication of the decomposed 



correlation matrix and a sequence of independent standard normal random variables (with zero mean 
and unit standard deviation).  

( ) ( ) ( ) ( )H x x x G x,θ = μ + σ ⋅   (3.2) 
 
Typically, more than one random property is involved in geotechnical problems. In this study, friction 
angle and cohesion are considered as random geotechnical parameters. Cross-correlation between 
cohesion and friction angle is known, therefore, the framework presented by Vořechovský (2008) was 
adopted to generate Gaussian cross-correlated random fields with a specific marginal distribution 
function, autocorrelation function, and cross-correlation coefficients. 
 
 
 
3.1. Gaussian cross-correlated random field 
 
For this study, the Karhunen-Loève (KL) expansion method is adopted to discretize anisotropic 
random fields of soil properties in a two-dimensional space. The KL expansion of a random field 
H(x,θ) is based on the spectral decomposition of its autocorrelation function ρ(x,x’). According to 
Vořechovský (2008), the set of deterministic functions over which any realization of the field H(x,θ) is 
expanded is defined by the eigenvalue problem as  
 

( ) ( ) ( )i i ix x x d x x, ' ' 'ρ ϕ Ω = λ ϕ

Ω
∫   (3.3) 

 
in which φi and λi denote respectively the eigenfunctions and eigenvalues of the autocorrelation 
function. The series of the deterministic set forms the expansion of H(x,θ): 
 

( ) ( )i i i
i 1

H x     x, ,
=

θ = μ +
∞
σ λ ϕ ξ θ ∈Ω∑   (3.4) 

 
where ξ(θ) is a set of orthogonal random coefficients (uncorrelated random variables with zero mean 
and unit variance).  
 
Each field of cohesion and friction angle is expanded using a set of independent random variables, and 
these sets are then correlated with respect to the assumed cross-correlation matrix between two 
expanded random fields according to the framework presented by Cho and Park (2009) and 
Vořechovský (2008), where the Gaussian random field is obtained using Eq.3.5, with Ĥ  equal to 

( ) ( )θχxλ D
ji,jϕj . More details regarding the methodology and the definition of XD can be found in 

Vořechovský (2008). 
 

Ĥ)x(i),x(H i⋅μ σ+=θ   (3.5) 
for (i=c,φ) 

 
3.2. Simulations 
 
The question as to how cohesion and friction angle are correlated is still not clearly defined in the 
literature, and certainly depends very much on the soil being studied. Cherubini (2000) quotes values 
of cross-correlation coefficient r ranging from -0.7≤r≤ -0.24, as does Wolff (1985), Yuceman et al. 



(1973) reported values in a range of -0.49≤r≤-0.24, while Lumb (1970) noted values of -0.7≤r≤-0.37. 
 
A negative correlation implies that low values of cohesion are associated with high values of friction 
angle and vice versa. In other words, a negative correlation between the cohesion and the friction 
angle means that the uncertainty in the calculated shear strength is smaller than the combined 
uncertainty in the two parameters values used to model the shear strength. 
 
Fig.3.1 and Fig.3.2 show in a 3D plot the random realizations ( Ĥ ) to simulate two-variate Gaussian 
fields for cohesion and friction angle. XD was computed for a hypothetical field of 20x40 elements 
where r ranges from -0.7≤r≤0.4. The CoV of each variable and the autocorrelation distances are not 
changed from one simulation to another. In this way, the influence of the cross-correlation coefficient 
can be addressed. 
 

 
a)Random field Ĥ1(c)  r=-0.7 

 
b)Random field Ĥ 2(φ) r=-0.7 

  
c)Random field Ĥ1(c)  r=-0.5 

 
d)Random field Ĥ 2(φ) r=-0.5 

 
Figure 3.1 a)-b)Random realization Ĥ of simulated two-variate Gaussian Random field for cohesion and friction 

angle for an assumed cross-correlated coefficient equal to -0.7. c)-d) Random realization Ĥ of simulated two-
variate Gaussian Random field for cohesion and friction angle for an assumed cross-correlated coefficient equal 

to -0.5. 
 



 
a) Random field Ĥ1(c)  r=0 

 

 
b)Random field Ĥ 2 (φ)  r=0 

 
c) Random field Ĥ1(c)  r=0.4 

 
d)Random field Ĥ 2 (φ)  r=0.4 

 
Figure 3.2 a)-b)Random realization Ĥ of simulated two-variate Gaussian Random field for cohesion and friction 
angle for an assumed cross-correlated coefficient equal to 0 (independent random field) c)-d) Random realization 

Ĥ of simulated two-variate Gaussian Random field for cohesion and friction angle for an assumed cross-
correlated coefficient equal to 0.4. 

 
Fig. 3.3 shows one realization of cross-correlated random fields of friction angle. The CoV used was 
9% (see Table 3.1), the cross correlation coefficient between friction and cohesion was set equal to 
0.5, the correlation distance assumed in the vertical direction was 4 m while in the horizontal direction 
it was assumed correlated along all the length. 
 
For this study, the computational process was conducted by purposely-developing a MATLAB 
function that generates 2D normal random fields for each of the input variables considered. The value 
assigned to each element of the FLAC mesh to be used for the nonlinear analysis was obtained by 
mapping the element centroids to the field obtained from the random field generator. For each set of 
statistical properties given in Table 3.1, MCS is performed and n realizations are generated for each 
value of PGA. Details regarding the numerical modelling of the embankment with FLAC 2D can be 
found in Sanchez (2011). 
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Figure 3.3 Realization of cross-correlated random field of friction angle for  the example dam. 

 
 
 
Table 3.1. Uncertainty assumed for the input parameters 

Property Mean CoV (%) Distribution 
c’ embankment (Pa) 30000 40 Gaussian 

φ’ embankment (°) 24 9 Gaussian 
c’ foundation (Pa)  50000 40 Gaussian 
φ’ foundation (°) 35 9 Gaussian 
c’ core (Pa) 40000 40 Gaussian 
φ’ core (°) 30 9 Gaussian 
G foundation (MPa) 441 12 Non-Gaussian 
φ’ layer (°) 24 9 Gaussian 

 
 
4. RESULTS 
 
At the purpose of comparing deterministic and stochastic analyses, 100 realizations of the numerical 
model were generated and analyzed using only one record (input 4 of set Tr=475 years). The same 
input motion was used when analyzing the deterministic model (mean values). In this way the results 
reflect only the influence of the uncertainty of geotechnical input parameters and can be compared 
with the deterministic case. A total of 700 computer hours were needed to obtain Fig.4.1. The 100 y-
displacement time histories obtained after assuming spatial variability of the soil are plotted together 
with the mean of such realizations and the y-displacement time history of the deterministic analysis in 
which the soil was assumed as homogeneous. 
 
One thing that becomes evident is the variability of the response when the uncertainty of input 
parameters is accounted for. The value of the maximum crest settlement obtained with 100 analyses 
ranged from zero displacement to almost 12 cm. Furthermore, it is observed that the y-displacement 
time history of the analysis carried considering the soil as homogeneous is considerably lower that the 
mean displacement time history obtained with the 100 analyses. 
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Figure 4.1 Comparison of y-displacement time history obtained with the assumption of homogeneous soil and 
the mean y-displacement obtained from 100 realizations assuming spatially varying soil. 

 
 
5. CONCLUSIONS  
 
A numerical procedure for a probabilistic analysis that considers the spatial variability of soil 
properties is presented. The methodology was implemented to study the seismic response of earth 
dams. A sensitivity analysis was performed by means of Tornado diagrams. Two-dimensional cross-
correlated non-Gaussian random fields were generated and mapped into the FLAC 2D model. A 
comparison was made between deterministic and stochastic analyses. The value of crest settlement 
obtained with the analysis carried out considering the soil as homogeneous is considerably lower that 
the mean crest settlement obtained with 100 analyses. Therefore, for this study the random modelling 
of soil properties increases the seismic demand hazard. Accounting for the uncertainty of soil 
parameters was found to be a significant factor in the prediction of the response of the earth dam. The 
obtained results offer insight regarding the stochastic analysis in the field of geotechnical engineering 
and demonstrate the importance of the spatial variability of soil properties in the outcomes of a 
probabilistic assessment of geotechnical system subjected to earthquake loading. 
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