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SUMMARY:  

When the dominant natural periods of a nonlinear structure elongate in such a way as to match with the 

energy in the ground motion, a phenomenon called moving resonance occurs.  This paper investigates the 

strong effect that moving resonance can have on nonlinear structural response. Instances of moving 

resonance are identified using continuous wavelet transforms and compared to behavior of systems with 

similar parameters that do not experience significant moving resonance. It is demonstrated that moving 

resonance can contribute to significant increase in displacements.  Also, the wavelet transform is shown 

to provide key information for analyzing moving resonance by revealing time-varying characteristics of 

the ground motions that are not available from traditional tools such as time histories, Fourier transforms, 

and response spectra. A method for quantifying the effect of moving resonance is proposed and used to 

examine the ground motion characteristics that contribute to moving resonance. 
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1. INTRODUCTION 

 

Nonlinear structures, when subjected to multiple ground motion records that are scaled to consistent 

ground motion intensity show significant variation in their response. This effect of ground motion 

randomness on the variation of structural response is defined as record-to-record (RTR) variability (Ibarra 

and Krawinkler 2011).  Because of record to record variability, seismic effects are often treated 

statistically.  For a suite of ground motions scaled to match a given design response spectrum, the peak 

interstory drifts obtained from response history analyses have large dispersion.  Typical values of 

dispersion as measured by the standard deviation of the natural logarithm of the interstory drifts may be 

0.3 or more (Cornell and Vamvatsikos 2002).  Computational studies have demonstrated that standard 

deviation of peak interstory drifts can be 70% larger than the mean for a suite of ground motions scaled to 

a hazard level with 2% probability of exceedance in 50 years (Luco and Cornell 2000).  This implies that 

the precision with which the structural response due to a given seismic hazard can be predicted is poor.  

Furthermore, because of this wide dispersion in response history results, the accuracy of the structural 

response predictions can be poor if a small number of ground motions are used such as allowed by current 

building codes (ASCE 2010). Finally, based on the current state-of-the-art it is impossible to predict 

whether a given building on a particular site is subject to the conditions that will lead to extreme values of 

interstory drift as large as two or three times the mean values. 

 

Although there have been multiple studies characterizing the contribution of record to record variability 

on dispersion of response history results, there have been significantly less attempts to analyze the sources 



 

 

of this variability and to predict conditions that lead to unusually large response.  Based on prior studies it 

is expected that the interaction of time-varying dominant structural periods in a nonlinear system and the 

time-varying periods containing dominant energy in the ground motion is the cause for much of the 

record to record variability.  However, the tools used by the earthquake engineering profession to 

characterize ground motions, such as response and Fourier spectra and parameters derived from these 

spectra, do not give any information about the time-varying nature of the ground motion’s frequency 

content.  Advances such as wavelet transforms reveal considerably more information about the time-

varying nature of earthquake related signals.   

 

Typical forms of time-dependency in ground motion signals include variation of the signal’s frequency 

content through time, also known as spectral nonstationarity, and the time dependent variation of a 

signal`s magnitude, also known as amplitude (or temporal) nonstationarity. An understanding of the 

spectral nonstationarity in ground motions and its effect on structural response is required to analyze or 

predict the behavior of buildings and bridges during earthquakes. 

 

For instance, when the frequency content of the ground motion shifts in a similar manner as the natural 

frequencies of the structural response, a phenomenon referred to as moving resonance occurs (Beck and 

Papadimitriou 1993).  Moving resonance can have a strong effect on the magnitude of structural response. 

Resonance occurs when a structure is subjected to harmonic or periodic loading with forcing frequency 

equal to the structures natural frequency.  In elastic systems with low damping ratios, even small periodic 

driving forces can produce large amplitude oscillations when applied in resonance. For nonlinear systems, 

the natural frequency is shifting.  Moving resonance is characterized by a small set of cycles in which the 

dominant ground motion oscillation frequency is resonant with the nonlinear system natural frequency.  

Even though the duration or resonant loading is not long enough to produce steady state resonant 

behavior, the short time period of resonant loading can cause significant increase in system response. 

 

This paper investigates the phenomenon of moving resonance from multiple directions.  First, the wavelet 

transform is identified as an important tool for investigating the time varying nature of ground motions 

and structural response.  Next, an instance of moving resonance is explored to demonstrate the use of 

wavelet transforms in understanding the phenomenon and the effect that moving resonance can have on 

structural response.  A method is then proposed for quantifying the effect of moving resonance.  Finally, 

the proposed method is applied to a set of twenty-two ground motions as an example of how the method 

could be used to investigate the characteristics of ground motions that lead to moving resonance.  It is 

concluded that a tool like the proposed method could be used to develop a ground motion characterization 

that accounts for the potential to cause moving resonance. 

 

 

2. WAVELET SELECTION AND BACKGROUND ON WAVELET TRANSFORMS 

 

The wavelet transform is a mathematical tool that can be used to identify frequency components of a 

signal at discrete windows in time. Whereas Fourier transforms act to convert a signal into a set of 

stationary harmonic waves, wavelet transforms convert a signal into a set of nonstationary wavelets.  

Wavelet transforms provide considerably more information than traditional methods of representing 

ground motions such as Fourier transforms, power spectral density, or response spectra, because they 

provide information about the nonstationarity in the signal. 

 

Wavelets are mathematical functions that have limited duration in time (compactly supported), occupy a 

limited frequency band (Fourier transform of the wavelet function is square integrable), and have zero 

mean.  The continuous wavelet transform is given in Eqn (1) allowing the use of any admissible mother 

wavelet function, Ψ, with complex conjugate Ψ*.  The wavelet coefficient, Ws,τ, represents the amount of 

energy in the signal, f(t), for scale level, s, and time, τ. If the wavelet function is complex, these wavelet 



 

 

coefficients are vectors in the real-complex plane containing both magnitude and phase information. Each 

wavelet coefficient represents how well the wavelet matches the signal given a particular scale (period) 

and position in time. The equation describing the complex Morlet wavelet is given in Eqn (2).   
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The complex Morlet wavelet is a logical choice for a wavelet function in that it consists of a harmonic 

function with frequency, fc, that has been modulated by a Gaussian window so as to have compact 

support.  A plot of the complex Morlet wavelet is shown in Figure 1.  The key advantage of wavelet 

transforms over tools such as the short term Fourier 

transform (STFT) is the variable resolution of the wavelet 

transform at different frequencies.  The wavelet transform 

draws data from long time windows for capturing low 

frequency content and narrow time windows for 

capturing high frequency content.  This is demonstrated 

graphically in Figure 2. Figure 2a shows a resolution box 

with width equal to the resolution in time and height 

equal to resolution in period.  The period resolution is 

calculated using the points where the Fourier transform is 

1% of the peak value.  Figure 2b shows the dimensions of 

the resolution boxes for the complex Morlet wavelet 

scaled to have periods between 0.5 sec and 4.0 sec.  For the STFT, the width of resolution boxes for all 

periods would be identical.  To capture long period energy, a large time window is required for the STFT 

leading to very poor time resolution (as compared to the period) for short period energy.  The aspect ratio 

and size of the resolution boxes varies with the choice of wavelet. 
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(a)  Resolution Box for One Wavelet      (b) Resolution Boxes for Several Periods 

Figure 2 – Variable Resolution in Wavelet Transforms 

 

Publications on wavelet analyses typically present the spectral value in terms of scale instead of 

frequency or period. Scale can be taken as inversely proportional to frequency. The relationship between 

scale and frequency is given by Eqn (3).  The variables, s, Δt, fc, Ta represent scale, sampling period, 

center frequency of the mother wavelet, and period corresponding to the given scale respectively. 
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Figure 1 - Complex Morlet Wavelet 
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There are two main types of wavelet functions, namely continuous wavelets and discrete wavelets. 

Discrete wavelet transforms (DWT) use an orthogonal set of wavelet functions to produce a non-

redundant set of wavelet coefficients.  An inverse DWT can be performed to reassemble the original 

signal from the DWT wavelet coefficients.  Continuous wavelet transforms (CWT) on the other hand 

produce a redundant set of wavelet coefficients, each representing overlapping information. 

 

Continuous wavelets are further classified into real and complex depending on whether the function 

includes imaginary terms.  Complex CWTs produce information about magnitude and phase.  For the 

work described in this paper, complex continuous wavelet transforms were selected to visualize the 

frequency content of signals for several reasons.  First, the visualization of frequency content will be 

smooth and continuous because of overlapping of wavelets.  Second, although the DWT operates in 

frequency bands, the CWT operates at a specific frequency that can be adjusted.  Similarly, the CWT can 

give be centered at any time.  The result is a better visualization of the frequency content as compared to 

DWT. 

 

A complex wavelet basis was chosen to capture the magnitude and phase of the energy content in the 

ground motion signal.  CWT using real-valued wavelets are not capable of capturing frequency content 

when the wavelet is out of phase with the signal.  The complex continuous wavelet rectifies this limitation 

as it includes a complex part. The magnitude of the resulting complex wavelet coefficients captures the 

frequency content in the signal regardless of phase. Furthermore, the phase of the signal at a given 

frequency can be obtained as the phase between the real and complex parts of the wavelet coefficient.  

The complex Morlet wavelet, presented in the previous section, is a complex continuous wavelets and 

was chosen for use in the studies described in this paper. 
 

 

3. STUDY OF THE EFFECT OF MOVING RESONANCE ON STRUCTURAL RESPONSE 

 

Prior research has demonstrated the significant effect that spectral nonstationarity can have on structural 

response (e.g. Beck and Papadimitriou 1993, Cao and Friswell 2009, Conte et al. 1992, Goggins et al. 

2006).  The effect of spectral nonstationarity is examined here in two steps: (1) Assessing the occurrence 

of moving resonance and (2) Quantifying its effect on the structural response. 

 

3.1 Assessing the Occurrence of Moving Resonance 

 

This section describes the details of a parametric study performed to identify the occurrence of moving 

resonance. It is expected that moving resonance may be related to initial structural period, the hysteretic 

shape for the given structural system, associated structural period elongation, phase between the structural 

response and the ground motion acceleration, sequence of ground motion dominant frequencies, duration 

of strong shaking, and possibly other factors.  The parametric study is intended to isolate the effect of 

specific variables on moving resonance such as strength, hysteretic shape, and initial period.  The study is 

also used to identify the combinations of ground motions and structural systems that lead to moving 

resonance.  

 

For simplicity and in order to maintain a non-specific approach, a generalized SDOF structure is 

considered. Two hysteretic models were considered in this study: bilinear elastic and the elastic-perfectly 

plastic. Elastic bilinear behavior was chosen because it isolates the effect of nonlinearity on period 

elongation by removing the effect of hysteretic damping and elastic perfectly plastic is used to represent a 

generic ductile structural system. The SDOF load-deformation behavior is generalized as a function of 



 

 

only two variables: initial fundamental period T0 and strength ratio, η.  The damping ratio    is held 

constant.  The equation of motion is given in Eqn (4) as a function of the nonlinear pseudo-restoring force 

of the system,    ̅( ), given in Eqn (5) equal to the nonlinear restoring force, F(u), divided by the initial 

stiffness, ko.  The restoring force is parameterized by the initial stiffness, ko, and a strength reduction 

factor, η, that controls the yield force (force associated with change in stiffness), Fy, as given in Eqn (6).  

The secondary stiffness for the bilinear elastic system and the elastic-perfectly plastic system is set equal 

to zero.  
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Full details of the parametric study can be found in the report by Naga (2011).  In this paper, one ground 

motion is analysed to demonstrate the related concepts.  The ground motion chosen is the 1994 

Northridge earthquake as measured at the Beverly Hills – Mulholland Drive recording station.  The 

ground motion acceleration history is shown in Figure 3a and the spectrogram showing a visualization of 

the wavelet coefficients is given in Figure 3b.    

 

 
    (a) Northridge Earthquake at Beverly Hills 

 
   (b)        (c) 

Figure 3 – Investigation of One Ground Motion Including (a) Acceleration Record, (b) Associated Spectrogram, 

and (c) Bilinear Elastic System Peak Displacements for Varying Initial Period and Strength 

The spectrogram shown in Figure 3b was created using a continuous wavelet transform with the complex 

Morlet wavelet and the wavelet scale was converted to period using the relationship described in Eqn (3). 

Lighter colors in the spectrogram indicate larger magnitude wavelet coefficients and thus greater energy 

in the ground motion associated with that time and period.  The spectrogram shows energy in the ground 

motion that starts at a dominant period of 0.5 sec and shifts to strong energy at a period of approximately 

1 sec at time equal to 9 seconds. 

 

Figure 3c shows the peak displacements of a bilinear elastic system characterized by an initial period, To, 

and nondimensional strength ratio, η, as given in Eqn (5) and Eqn (6).  Figure 3c is essentially a three-
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dimensional nonlinear displacement response spectrum.  Although large values of strength reduction 

factors (values greater than 1) might be unusual in seismic design, they represent more elastic behavior 

such as might be expected for systems with large overstrength or systems subjected to smaller 

earthquakes than the design level.  The right side of the plot approaches the elastic displacement response 

spectrum.  This nonlinear response spectrum encompasses a large amount of information that facilitates 

quick assessment of potential cases of moving resonance.  For instance, it can be seen that specific 

combinations of initial period and strength ratio (To, η) result in local maxima in peak displacements.  

These specific structural configurations are prone to large displacements when subjected to the chosen 

Northridge ground motion whereas slight changes in structural characteristics result in reduced 

displacements and ductility demand. 

 

To further demonstrate the reasons why some configurations produce larger drifts than others, the 

structural response for configurations represented by the (To, η) pairs equal to (0.5,0.5) and (0.5,0.75) are 

analyzed further.  Figure 4a shows the displacement history of the (To=0.5, η=0.5) system and Figure 4c 

shows the associated spectrogram.  The trend in the structural period is shown to start at 0.5 sec, elongate 

to a value between 1 sec and 1.5 sec at a time approximately equal to 10 seconds, and then return to the 

elastic period of 0.5 sec at approximately 15 seconds.  The trend in the structural period correlates quite 

well with the dominant periods in the ground motion shown in Figure 3b as described above.  This 

correlation indicates the occurrence of moving resonance.  On the other hand, the displacement history for 

the (To=0.5, η=0.75) system is shown in Figure 4b with associated spectrogram shown in Figure 4d.  In 

this case, the larger strength of the system causes less period elongation.  The structural period does not 

match with the large amount of energy in the ground motion located at a period of 1 sec and time equal to 

9 seconds.  Thus, moving resonance does not occur and the peak displacement is approximately half of 

the case shown in Figure 4a in which moving resonance is demonstrated.  To summarize, it is shown for 

this ground motion that the system with To=0.5 and η=0.5 experiences the right amount of period 

elongation to cause the system period to match the ground motion energy (moving resonance), while 

systems with larger η do not experience enough period elongation to cause moving resonance.  Similarly, 

plots like Figure 4, that are not included here, show that smaller η produces too much period elongation, 

causing less moving resonance which leads to reduction in peak displacements as compared to η=0.5 as 

shown in Figure 3c. 

  

 
(a) Strong Moving Resonance              (b) Similar System Without Moving Resonance 

 
(c) Spectrogram for (a)    (d) Spectrogram for (b) 

Figure 4 – Demonstration of Moving Resonance Including (a) Acceleration Record for Northridge Earthquake 

Measured at Beverly Hills, (b) Wavelet Coefficients 
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3.2 Quantifying the Effect of Moving Resonance 

 

The objective of this section is to develop a measure for quantifying the effect of moving resonance. 

Several potential measures for moving resonance were investigated by Naga (2011).  In that report, the 

correlation between the dominant periods in the structural response and the dominant periods of the 

ground motion were measured.  The phase between the structural response and the ground motion 

acceleration was also analyzed.  Further, a metric was proposed for quantifying moving resonance which 

will be described in this section. 

 

The moving resonance (MR) amplification ratio is developed here as the ratio of the peak structural 

displacement due to a ground motion divided by an estimate of the structural displacement associated 

with no moving resonance.  Estimating the structural displacement that might occur in the absence of 

moving resonance is accomplished by subjecting the structure to components of the ground motion with 

limited frequency band.  The procedure for computing the MR amplification ratio is summarized as 

follows: 

1. The structure is subjected to the ground motion and the peak displacement is recorded as Dpeak. 

2. The peak displacement in the absence of moving resonance, DnoMR is estimated. 

a. The ground motion is decomposed into component signals with limited frequency band using 

discrete wavelet transforms. 

b. The nonlinear structural response to each ground motion component is computed using 

response history analyses. 

c. The components of structural response are added together and the peak displacement is 

recorded as DnoMR. 

3. The MR amplification ratio is computed as the ratio, Dpeak / DnoMR 

 

The total input energy from the ground motion components (step 2b) is identical to the input energy from 

the original ground motion (step 1), but the structure is not allowed to interact with more than one 

frequency band in each response history analysis removing any possibility for moving resonance.  

However, since the principle of superposition is not applicable for nonlinear systems, the resulting MR 

amplification ratio cannot be taken as an absolute measure of the effect of moving resonance and instead 

should be used as a relative measure. 

 

 

Figure 5 - Example of the first 4 Components of Ground Motion and their responses 
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The development of the MR amplification ratio is demonstrated in Figure 5 in which the first four limited 

frequency band components of the Northridge at Beverly Hills ground motion are shown as obtained 

using discrete wavelet transform.  The displacement histories for an elastic system are also given in 

Figure 5. For this particular ground motion, it is shown that structural response is dominated by 

component 4 because it is the frequency band that includes the natural period of this elastic system.    

 

Figure 6a shows a comparison between the response built from adding up the individual response 

components (step 2c) and the response history due to the original ground motion (step 1).  For elastic 

systems, the two are identical.  For nonlinear systems experiencing moving resonance, such as the bilinear 

elastic system discussed in the previous section with (To=0.5, η=0.5), the difference between the two is 

significant as shown in Figure 6b.  For this case the MR amplification ratio is approximately six. 

 

 
(a) Elastic Behavior                           (b) Large Amplification Due to Moving Resonance 

Figure 6– Comparison of Displacement History Due to Original Ground Motions and Displacement History 

Assembled from Response Histories Due to Ground Motion Components,  

Used in Calculation of the MR Amplification Ratio 

 

The MR amplification ratios for a range of initial 

periods and strength ratios are shown graphically 

in Figure 7 for the bilinear elastic system 

subjected to the Northridge ground motion given 

in Figure 7.  Although the moving resonance 

amplification ratio is approximately unity for 

most configurations, there is a range of 

combinations of initial period and strength 

reduction factor that create significant moving 

resonance. This set of structural configurations is 

particularly susceptible to excessive 

displacements when subjected to this Northridge 

ground motion.  

 

 

4. INVESTIGATING THE CAUSES OF MOVING RESONANCE 

 

The objective of this section is to demonstrate how the proposed MR amplification ratio can be used to 

identify ground motion characteristics that lead to moving resonance.  It is hypothesized that the duration 

of strong shaking may affect the ability of the system to develop moving resonance.  The MR 

amplification ratio is used to determine the effect. 

 

For the purposes of this study, the bilinear elastic system was investigated along with a suite of ground 

motions.  A total of 22 far field ground motion records were selected from the FEMA P695 far field set 

(FEMA 2009). These ground motions are chosen because the magnitude of record to record variability 
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Figure 7 – Moving Resonance Amplification Ratios for 

Bilinear Elastic SDOF System Subjected to Northridge at 

Beverly Hills Ground Motion 



 

 

(βRTR=0.4) has been investigated (Ibarra and Krawinkler 2011).  The interval between the times at which 

5% and 95% of the total Arias intensity and the interval between the times at which 5% and 50% of the 

total Arias intensity are defined as the strong motion duration and the duration to peak shaking in the 

present study (Trifunac and Brady 1975). The Arias intensity plots for both definitions are shown in 

Figure 8 for the 1995 Kobe, Japan earthquake as measured at the Shin Osaka station.  

            

Figure 8 – Definition of Duration of Strong Shaking as (a) time interval at which 5% and 95% of total Arias 

intensity is attained (b) time interval at which 5% and 50% of total Arias intensity is attained 

 

Figure 9 shows the average MR amplification ratios 

versus the duration of strong shaking for the bilinear 

elastic system subjected to the full set of ground 

motions used in the study. The average MR 

amplification ratio is calculated as the average of the 

MR amplification ratios for periods ranging from 

0.25 sec to 1.25 sec and strength reduction factors 

between 0.05 and 2.5 Figure 9 shows that the very 

short duration events may not be long enough to 

develop moving resonance, very long duration 

events may be too long to capitalize on the period 

elongation in the structure, and medium length 

events may be most conducive to moving resonance. 

For more details on this study including results for 

the elastic perfectly plastic system see Naga (2011). 

 

 

5. CONCLUSIONS 

 

Since common methods for characterizing ground motions such as response and Fourier spectra do not 

capture spectral nonstationarity, it is possible that buildings might be designed based on ground motions 

that don’t represent the spectral nonstationarity for a given site and earthquake scenario. This can lead to 

the design of inadequate structural systems.  This paper represents a first step toward the development of 

a ground motion characterization which includes the potential for moving resonance.  Specific 

conclusions about the study described herein include the following. 

 

 Wavelet transforms and the related Spectrograms which graphically show the wavelet 

coefficients are useful for examining spectral nonstationarity of ground motion signals.  This 

 

Figure 9 – Correlating Displacement Amplification 

Factor to Duration of Strong Shaking 

 



 

 

information is lost in typical earthquake engineering tools such as Fourier spectra and response 

spectra. 

 The phenomenon of moving resonance was investigated and a specific case of moving resonance 

was demonstrated in which time-varying structural period was found to correlate well with the 

energy in the ground motion leading to large displacements, as much as two times larger than 

systems with slightly altered characteristics. 

 A Moving Resonance (MR) Amplification Ratio was proposed with the intent of assessing and 

quantifying moving resonance.  The MR Amplification Ratio was found to be quite large for 

some configurations indicating strong effect of moving resonance on peak displacements. 

 To demonstrate the potential use of the MR Amplification Ratio, the effect of strong shaking 

duration on the occurrence of moving resonance was studied.  It is concluded that ground motions 

with medium duration of strong shaking create the most potential moving resonance. 

 Using these types of tools, further research may allow the potential for moving resonance to be 

predicted based on the characteristics of the expected ground motions and the structure hysteretic 

behavior.  Better understanding of this phenomenon will lead to the design of safer structures as 

the consideration of moving resonance can be included in ground motion selection or structural 

design. 
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