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SUMMARY 
 
In the elastic response of building the uncertainties, due to the sources of accidental torsion, are taken into 
account in building codes introducing the so-called accidental eccentricity. This eccentricity can mathematically 
be expressed as a modification of the mass matrix.  
In the framework of the response spectrum analysis (RSA) each mass modification, due to the accidental 
eccentricity, requires new analyses that could be numerically cumbersome.  
A new combination rule, here called Interval Complete Quadratic Combination (ICQC), is proposed to obtain in 
closed form the maximum responses of structures with mass modification with a single RSA, without solving 
any further eigenproblem. This procedure is based on the application to the RSA of the interval perturbation 
method, recently proposed by the authors for determining the upper and lower bounds of the dynamic response 
of structures with uncertain-but-bounded mass distribution vibrating under either deterministic or stochastic 
input.  
 
Keywords: Accidental Eccentricity, Response Spectrum Analysis (RSA), Complete Quadratic Combination 
(CQC), Interval Analysis.  
 
 
1. INTRODUCTION 
 
In the elastic response of building subjected to seismic excitation discrepancies between the computed 
and actual response have been shown (De La Lera and Chopra, 1994). The increase in building 
response can be due to several sources of accidental torsion: rotational motions of the buildings 
foundation, uncertainty in the stiffness of structural elements, uncertainty in the location of the centre 
of mass (CM), uncertainty in mass, stiffness and strength distributions of stories and in other sources 
of torsion. This is the reason why building codes (EC8, 2004; IBC 2006), to take into account of the 
effects of accidental torsion, establish of shifting the center of mass (CM) of each floor, from its 
nominal position, by a distance equal to the so-called accidental eccentricity. This latter can be 
defined by the quantity  ad b  , where b is the plan dimension of the building perpendicular to the 
direction of horizontal component of ground motion considered and   0.05 0.1  is a parameter 
which define the uncertainty in accidental eccentricity.  
In the framework of the seismic analysis of structures, the response spectrum analysis (RSA) is the 
most utilized procedure by engineers. The RSA requires the following main steps: (1) to solve an 
eigenproblem to evaluate for the structure the first natural frequencies, modes and their participation 
factors; (2) to select the damping ratios for each mode; (3) to read the maximum structural response 
for each mode from the code-specific design spectrum or from the site-specific spectrum; (4) to 
combine the maximum responses of all modes considered to have the expected maximum response of 
the structural systems. The last item is generally covered, in seismic codes, by means of the so-called 
complete quadratic combination (CQC) rule (Wilson et al., 1981).   
In the building codes the effects of the accidental eccentricity are taking into account considering all 



the possible permutations of the center of mass of the structural system to find the worst condition for 
the structural elements. This approach requires, for each center mass modification, a new RSA 
analysis, which needs the four steps before described. It follows that the described code approach is 
very cumbersome from a numerical point of view.  
In this paper a new combination rule to obtain in closed form the maximum responses of structures 
with accidental eccentricity by RSA without solving any further eigenproblem is proposed. The 
proposed procedure is based on the application to the RSA of the interval perturbation method, 
recently proposed by the authors (Cacciola et al., 2011) for determining the upper and lower bounds of 
the dynamic response of structures with uncertain-but-bounded mass distribution vibrating under 
either deterministic or stochastic input. Finally, an extension of the classical CQC rule to the analysis 
of structural systems with uncertain-but-bounded parameter is presented. In particular, for structural 
systems with accidental eccentricity, the proposed approach allows to directly evaluate the worst 
condition for the structural elements with a single RSA. This very remarkable result is obtained by 
adopting a new modal combination rule, here called Interval CQC (ICQC).  
 
2. EQUATIONS GOVERNING THE PROBLEM 
 
Let us consider an idealized multi-storey buildings with rigid floor diagrams, where the floor masses 
are lumped and the lateral resistance is provided by resisting frames in the x and y directions. The 
structure subjected to ground motion has three degrees of freedoms (DoF) for each floor. Under the 
previous assumption the equation of motion of a linear quiescent n-floor building subjected to seismic 
excitation, represented by the accelerogram ( )gu t , can be written in the form: 
 

g( ) ( ) ( ) ( ) ,t t t u t   Mu Cu K u M    (1) 
 
where M , C , and K  are the 3n×3n  inertia, damping, and stiffness matrices of the structure; ( )t u  

 T
( ) ( ) ( )x yt t tu u u  is the vector of floor displacements relative to the ground collecting the n 

translational and rotational components in the x and y directions  , ,( ), ( )x j y ju t u t and around the 

vertical axis  , ( )ju t , respectively  1,2, ,j n   ; a dot over a variable and the superscript T denote 

differentiation with respect to time and the transpose operator, respectively; finally, i   is the 3n  
order influence vector evaluated considering the seismic excitation in i direction  ,i x y .  
By defining the accidental eccentricity (EC8, 2004; IBC 2006) as , , i s i sd b   where   is a positive 
parameter which define the uncertainty in accidental eccentricity and ,i sb  is the plan dimension of s-th 
floor of the building, Eq. (1) can be rewritten as 
 

  g( ) ( , ) ( , ) ( , )  ( ) , ,i i i i i it t t u t i x y        M u Cu K u M τ    (2) 

 
where i  is the direction of horizontal component of ground motion considered.  
Let us definer now, according to the interval analysis, the uncertain-but-bounded   such as 
    , being   and   its lower and upper bound, respectively. It follows that  ,I     , 
where with   the set of all closed real interval numbers has been denoted. The interval variable I  
is also defined (Moore, 1966): 
 

0  ,I Ie      (3) 
 
where Ie  denotes the unitary interval variable, whose values lies in the unitary interval  1,1 ; 0  
and   denote the nominal (or midpoint) value and the deviation amplitude (or radius) of the interval 
variable I , respectively. In this paper it is assumed that I  posses zero midpoint value. It follows 



that    , consequently the interval variable I  can be redefined as: 
 

 ,  I Ie       (4) 
 
For the previous positions the inertia matrix ( )i M , evaluated considering the seismic excitation in i 
direction  ,i x y , can be expressed by the following relationship: 
 

  0 ,      ,I
i ie i x y    M M M  (5) 

 
where 
  

 0
0

0 ;     ( ) ;      , .i i i x y



 

  


M M M M  
(6) 

 
Notice that the nominal (or midpoint) position of CM is obtained setting 0   in Eq. (2), so in this 
case Eqs. (1) and (2) coincide.  
In the framework of the traditional modal analysis, the solution of Eq. (2) may be pursued by 
introducing the following coordinate transformation: 
 

 0( , ) ( , ),      , , ,I
i it t i x y        u q   (7) 

 
where ( , )i tq is the interval vector gathering the first m  modal coordinates ( , )i, jq t  
( 1,2, ,j m n  ); 0  is the modal matrix, of order n m , pertaining to the midpoint or nominal 
configuration in which 0 (0)M M . Specifically, the modal matrix 0 , collecting the first m 
eigenvectors, normalized with respect to the mass matrix 0M , is evaluated as solution of the 
following eigenproblem: 
 

2
0 0 0 0 0 0 0; m

K M M I       (8) 

 
2
0  being a diagonal matrix, of order m, listing the squares of the natural circular frequencies 2

0, j  
( 1,2,..., )j m  for the nominal value of the uncertain parameter. The differential equations governing 
the evolution of vector  ,i tq  is obtained by applying the position (7) to equation (2) and pre-

multiplying the result by the matrix   1
0 0 i  M M : 

 
           0, g, , , ( ) ,      , , ,I

i i i i i it t t u t i x y              q q q p        (9) 

 
where 
 

       1 1
0 0 0 0 0 0 0, 0 0;      ;      .i i i i i i        M M C M M K p M         (10) 

 
In the last equation, for the nominal structure, 0,ip  is the vector of participation coefficients for the seismic 
excitation acting in i direction. In structural dynamics, the solution of Eq.(2) is often obtained introducing the 
state variables. Let the vector of state variables  ,tz , of order 2 1m , be  written in the form  
 

   
   ,
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,

i I
i

i

t
t i x y

t


    


 
    
 

q
z
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(11) 



 
Then the equations of motion in modal space state variables can be recast as 
 

       0,, , ( ),      , , .I
i i i i gt t u t i x y          z D z v    (12) 

 
where 
 

      0,
0,

,m m
i i

ii i


 

  
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(13) 

 
According to the mass matrix decomposition in given Eq.(5), the matrix ( )i D  can be split as: 
 

0( ) ,      ,I
i ie i x y   D D D  (14) 

 
where 
 

 0 2 2
0 0 0 00

0 ;      ( ) ,     , .m m m m
i i

i i

i x y
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(15) 

 
with iA  a symmetric matrix of order m, having for element ,i jka , and defined as:  
 

0 0,           ,i i i x y  A M   (16) 

 
Notice that in Eqs.(15) the modal damping matrix 0 0 0

 C   , for classically damped systems, is a 
diagonal one listing 0,2 j j  , with j  the damping ratio associated to j-th mode.  
In analogy to the decomposition of the mass matrix defined in Eq.(5), the vector response can be also 
evaluated as sum of two aliquots: the midpoint or nominal solution,    0, 0,i it tz z ,  and a deviation, 

 ,i tz , that is: 
 

   0,, ( ) ( , ),      , ,     , .I
i i it t t i x y          z z z   (17) 

 
The differential equation governing the evolution of the midpoint solution   0 tz  is obtained by setting 

0   in Eq. (12): 
 

   , 0 , , ( )i i i gt t u t   z D z v   (18) 

 
Similarly, the equations governing the deviation vector  ,i tz  can be obtained substituting the 
relationship (17) into Eq.(12), and by taking into account Eq.(18), as: 
 

0 0,( , ) ( , ) ( ),     , .I I
i i i i it e t e t i x y          z D D z D z  (19) 

 
Notice that by setting the unitary interval variable Ie  at its bounds, the differential equation (19)  leads 
to the following two sets of differential equations: 
 



 

 
0 ,

0 ,
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( , ) ( , ) ( ),              ( , ).

i i i i i

i i i i i

t t t

t t t i x y

  
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 


 


    
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z D D z D z

z D D z D z








 

(20) 

 
In the previous equations, the superscripts “  ” and “  ” mean that the corresponding quantity is 
evaluated assuming the unitary interval variable Ie  equal to its lower and upper bound, respectively. 
 
 
3. RESPONSE SPECTRUM ANALYSIS OF STRUCTURES WITH UNCERTAIN-BUT-
BOUNDED PARAMETERS 
 
3.1 Traditional complete quadratic combination (CQC) rule 
 
Before proceeding with the formulation of the proposed method let us summarize the main steps and 
assumptions of the conventional Response Spectrum Analysis (RSA). It has to remark that, for the 
sake of simplicity, in this section, the subscript index i, that until now has been used in order to specify  
the direction of horizontal component of ground motion considered  ,i x y , is neglected. 
The RSA by means of the Complete Quadratic Combination (CQC) rule, estimates the maximum 
displacement of the th Dof,  u t , as a combination of the maximum modal responses, where each 
maximum is obtained in terms of the mean response spectrum associated with the corresponding 
modal frequency and damping ratio, that is: 

 
   pa 0, pa 0,

0, 0, ,max 0, 0, 0, 0, 0, 2 2
1 1 0, 0,

, ,
max

m m
j j k k

jk j k j k
j k j k

S T S T
u t u p p

 
  

  

       
(21) 

where 0, j   and 0, j , are the element of the modal matrix 0Φ  and associated diagonal spectral matrix 

0Ω , solutions of the eigenproblem (8), respectively; 0, 0, ,j i jp p  is the j -th participation factor; 

 pa 0, ,j jS T   is the j -th ordinate of the response spectrum in terms of pseudo-acceleration. This 

quantity depends in turn on periods of vibration 0, 0,2i iT    and viscous damping ratios j  of the 
m  modes of vibration. It is emphasized that Eq. (21) is evaluated by making the following 
assumptions (Der Kiureghian, 1980, 1981): (a) the maximum value of the structural response is 
considered to be proportional to its standard deviation by means of the so-called peak factor 
(Vanmarcke, 1975, 1976); (b) the mean value of the modal maximum response is evaluated in terms of 
the mean response spectrum associated with the corresponding modal frequency and damping ratio 
(Der Kiureghian, 1980), and (c) the peak factor is considered to be approximately the same for the 
response of interest  u t  and for all the modal responses    0, 0, ,j i jq t q t (Der Kiureghian, 1981).  
In Eq.(21) 0, jk  is the cross-correlation coefficient, between j -th and k -th modes of vibration, which 
can be defined as:  
 

0,
0,

0, 0,

jk
jk

jj kk




 
  

 
(22) 

 
0, jk  is the cross-covariance between j -th and k -th modes of vibrations;  and 0, jj   is the standard 

deviation of the j-th mode.  
Closed form expression of the cross-correlation coefficient can be evaluated under the assumption that 
the input process is a stationary Gaussian white noise process (Der Kiureghian, 1980; Wilson et al., 
1981). In this case it reads: 
 



  
3

2

0,

8 j k j j k k j k
jk

jk

       





  

(23) 

 
with jk  defined as: 
 

    22 24jk j k k j j k j j k k j k                  (24) 

 
3.2 Interval CQC (ICQC) rule for structural systems with uncertain-but bounded parameters 
 
The aim of this paper is to propose a new CQC rule for structural analysis of buildings with uncertain-
but-bounded parameters by adopting the interval algebra. Indeed this algebra leads to a very suitable 
formulation to evaluate, in closed form expression, a combination rule in presence of accidental 
eccentricity. The rule here proposed is defined interval CQC (ICQC). 
It has been largely recognized that the combination rules can be derived by stochastic analysis 
assuming the input as a stationary Gaussian process.   
Since it is assumed that the system behaves linearly the structural response is a stationary zero-mean 
Gaussian process too. This implies that the complete probabilistic characterization of the response is 
ensured by the knowledge of the modal covariance matrix that, for stationary excitation, can be 
evaluated by solving the algebraic Lyapunov matrix equation, which, in the modal subspace, can be 
written as: 
 

           T
2 ,      ,

i i i

I
i i m            z z zD D B O    (25) 

 
where  

i
zB is a symmetric matrix defined as: 

 
       T T

0, 0,E ( ) , E , ( ) ,      ,
i

I
i g i i g iu t t t u t           zB v z z v    (26) 

 
in which E   is the mathematical expectation operator. According to Eq.(17), the matrix  

i
zB  and 

the covariance matrix of the modal random response can be split as the sum of two aliquots: the 
midpoint or nominal solution and a deviation, that is: 
 

   
   

0 ,

0, ( ),      , ;      ,
i i

i

i

I
i i i x y

 
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  

     

z z

z

B B B

   
 

 
(27) 

 
where 0,i  denotes the midpoint modal covariance matrix, while ( )i   is the deviation of the modal 
covariance matrix due to the uncertain-but-bounded parameter  . By substituting Eqs. (14) and  (27) 
into Eq.(25) the following relationship is obtained: 
 

   
0,

T
0 0, 0, 0 0,

T
0, 2

( ) ( ) ( )

  ( ) ,          , ;      , .
i

I
i i i i i i i

I I
i i i i m

e

e i x y

   
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                 
            z

D D D

D B B O

     

  
 

 
(28) 

 
Collecting the terms associated with the nominal values of the bounded parameters  0  , the 
equations ruling the midpoint modal covariance matrix 0,i  is given as: 
 

0 ,

T
0 0, 0, 0 2 .

ii i m  zD D B O   (29) 

 



The equations ruling the deviation of the covariance matrix ( )i   can be derived from Eq.(28), as: 
 

 

T T
0 0

T
0, 0, 2

( ) ( )

                      ,      , .    

I I
i i i i

I I
i i i i i m

e e

e e i x y

   

  

          
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D D D D

D D B O

 

  
 

(30) 

 
Finally setting the variable Ie  at its bounds, Eq.(30) leads to the following two sets of 2m algebraic 
equations (Muscolino and Sofi, 2012): 
 

 

 

T T T
0 0 0, 0, 2

0
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                                                                                                                            ,
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

  



          


 

D D D D D D B O

D D
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 T T T
0 0, 0, 2( ) ( ) ,      i i i i i i i m               D D D D B O  

 

(31) 

 
In the previous equations, the superscripts “  ” and “  ” mean that the corresponding quantity is 
evaluated assuming the unitary interval variable Ie  equal to its lower and upper bound, respectively. 
Moreover, in  Eq.(31), under the assumption of small deviation amplitude of the uncertain-but-
bounded parameters  , the terms iD , in square bracket, can be reasonably neglected. Under this 
assumption, it is readily found that ( )i   ( )i    ( )i   and i

 B i
 B iB  so that it 

is sufficient to solve just one of one set of algebraic equations for each seismic input direction: 
 

 T T
0 0 0, 0, 2( ) ( ) , ,   i i i i i i i m i x y         D D D D B O     (32) 

 
It has to emphasize that Eq.(32) evidences the linear dependency of the deviation matrix ( )i   on 
  that is ( )i i    ; where i  is the solution of the following algebraic equation, directly 
derived from Eq. (32): 
 

T T
0 0 0, 0, 2 , ,   i i i i i i i m i x y    D D D D B O     (33) 

 
Once the modal covariance matrices 0,i  and i  have been determined as solution of Eqs. (29) and 
(33), respectively, the corresponding nodal covariance matrices can be computed as follows: 
 

0 ,

0T T
n 0 0, 0 n 0 0 0

0

;     , , ;
i ii i i x y

 
     

 

0
0


        
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(34) 

 
where the matrix 0  of order 2 2m m  is defined as a function of the modal matrix 0 , solution of 
the eigenproblem (8). 
Finally, according to interval analysis, and for the linear dependency of the deviation matrix ( )i   
on  , the nodal interval variable covariance matrix, can be evaluated as: 
 

 
0 , 0 ,n, n n, n n( ) ( ) ,            , ;      , .

i i i

I I
i i e i x y                    (35) 

 
where n, ( )i   is the total deviation, in nodal or geometric space, of the covariance matrix. It follows 

that the interval that contains all possible values of the nodal interval covariance matrix n, ( )i
   can 

be defined by the lower and upper bounds, that  is: 
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In this equation the symbol   denotes absolute value component wise, while n i

  and n i
  define the 

lower and upper bounds of the nodal interval variable covariance matrix n, ( )i
  , respectively.  

By applying the interval algebra, and according to Eq. (36), the lower and upper bounds of the 
variance of the th  nodal displacements can be evaluated as: 
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Furthermore, according to the philosophy of the CQC approach, the upper bound of the maximum 
value of the structural response, ,maxu , can be considered to be proportional to the upper bound of the 
corresponding standard deviation,  ,u   multiplied by the so-called peak factor,   (Vanmarcke, 
1975, 1976): 
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The nodal variances, according to Eq.(34),  are evaluated as linear combination of modal covariances 
as follows: 
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where  jkr  is the following coefficient: 
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while 2

0, pp   , 1,2, ,p j k m     and jk  are the elements of modal covariance matrices 0,i  and i  

 ,i x y , obtained by solving Eqs.(29) and (33), respectively. Moreover, the basic assumptions of the 
traditional CQC are: i) the peak factor,  , for the nodal response of interest  u t  is assumed 
approximately the same as the peak factors, j , of all modal responses  0, jq t and ii) the median of 
the maximum peak of the modal response is expressed, in approximate form, as a function of the mean 
response pseudo-acceleration spectrum  pa 0, ,j jS T  :  0, 0, pa 0, ,j jj j j jp S T   . Then, according to 
these assumptions it possible to derive the following relationships: 
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(41) 

 
where the cross-correlation coefficient 0, jk  has been introduced in Eq.(22). Finally, substituting 
Eqs.(41) into Eq.(38) the ICQC rule for structural systems with uncertain-but-bounded parameter is 
obtained:    
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where 0, ,maxu   is the maximum of the response evaluated by applying the traditional CQC rule (see Eq. 
(21)). Under the assumption of stationary Gaussian white noise input process this assumption, closed-
form of the coefficient jkr  can be evaluated as: 
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where 
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In these equations jka  represents the j,k element of the symmetric matrix iA  ,i x y of order m 
introduced in Eq.(16), while jk  has been defined in Eq.(24) and 0, jp  is the j -th participation factor. 
 
 
4. NUMERICAL EXAMPLE 
 
With the purpose of offering a robust assessment of the proposed approach, a two-storey building 
depicted in Figure 4.1 is investigated. The structure has mass 36,000m kg , uniformly distributed on 
the floor, length of the side orthogonal to the ground motion acceleration modelled in y-direction 

6 mxb   and  the Young modulus is 10 23 10 mcE N  .  
The maximum value of the structural response by applying the classical CQC and the proposed ICQC 
for the structural system with accidental eccentricity 0.05x xe b   has been evaluated and compared 
with the mean value of the structural response evaluated by means of one thousand of Monte Carlo 
Simulations (MCS), whose consistency with the response spectrum is verified by applying the 
procedure described in Cacciola et al. (2004). In the simulations a type-A soil, which may correspond 
to a rock or other rock-like geological formation, according to EC8, has been considered along with a 
duration of the stationary part of the accelerogram, i.e. gT   20 s . 
Table 4.1 shows the values of the maximum displacement in y-direction of the first and second floor. 
One can note the good performance of the proposed ICQC that allows to directly evaluate, with a 
maximum inaccuracy of about 1%, the worst condition ( 0.05x xe b  ) for the structural elements with 
a single RSA, indeed it avoids of calculating new eigenproblems that should be solved every time that 
accidental eccentricity is imposed to the CM of the building.  



 
 

 

 

 

 

 
 

Figure 4.1  Two storeys structure: Finite element model (left-hand side); plan view (right-hand side). 
 
 
Table 4.1  Maximum values of the displacements in y-direction of different methods of seismic analysis. 
Accidental eccentricity 

0.05x xe b   
MCS 
[m] 

CQC (EC8) 
[m] 

ICQC (Interval) 
[m] 

uy1,max 0.003330 0.003345 0.003329 
uy2,max 0.005317 0.005400 0.005373 
Accidental eccentricity 

0.05x xe b   
   

uy1,max 0.003010 0.002990 0.003329 
uy2,max 0.004800 0.004832 0.005373 
 
Given the reduced computational effort (the formulae are known in closed form), the proposed ICQC 
appears to be a very effective replacement of the traditional procedure recommended by building 
codes, considering the effects of the accidental eccentricity in the determination of the structural 
response of buildings. 
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