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SUMMARY: 

A methodology is developed for designing optimum passive energy dissipation systems using active control 

algorithms. A combination of stiffness reduction and increase of damping is utilized to reduce both acceleration 

and displacement response. In this method, first an active control system is designed using pole assignment 

control algorithm. Here, the method to assign the new structural poles is modified such that the resulting 

properties can be achieved by a passive control system using viscous fluid dampers. Next, a passive control 

system is designed to result in the structural properties close to those extracted from the actively controlled 

system. It is shown that this method results in control systems that provide structural performances slightly better 

than, or close to those of ordinarily designed optimum passive systems. Furthermore, by carefully selecting the 

location of the structural poles, the proposed method provides more versatility in the design of passive control 

systems. 
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1. INTRODUCTION 

  

It is generally accepted that active control systems provide better structural performance compared to 

the equivalent passive systems. On the other hand, the control systems used in most actual structures 

are of passive type, mainly due to the considerable costs associated with the construction and 

maintenance of active control systems. This study is aimed at the design of passive control systems 

with performances as close as possible to those of the active systems. For this purpose, it is attempted 

to utilize active control algorithms to determine the modification of the properties needed to improve 

the structural performance. Then a passive system is designed, such that along with the necessary 

modifications in the stiffness, attempts to reproduce the same structural properties to the possible 

extent. 

 

Most building design codes mainly consider the inter-story drifts as the primary design parameter to 

minimize the loss of life or structural damage. Inter-story drifts are in fact suitable indicators for 

structural damage as well as damage to displacement-sensitive non-structural components, such as 

infill walls and piping. However, recent studies have shown that in addition to the drifts, absolute 

acceleration response may lead to damage to some non-structural components such as sensitive 

equipment, furniture and HVAC systems. Accelerations may also increase the human fear during 

earthquakes (Lavan, Cimellaro et al. 2008). For these reasons, a combination of inter-story drifts and 

accelerations are used in this study as a performance index that leads to the desired structural response 

when minimized. 

 

Existing methods for seismic retrofitting of buildings often rely on adding damping and/or stiffness to 

the structures using passive control devices (Gluck, Reinhorn et al. 1996; Afsharhasani and 

Ahmadizadeh 2001; Lopez and Soong 2002). These devices usually dissipate energy by means of 

viscosity, friction, or yielding, and may also stiffen the building, consequently reducing the inter-story 



drifts (Cimellaro 2009). However, increasing the structural stiffness in most structures may lead to an 

increase of the acceleration response. Furthermore, the additional forces introduced by control systems 

may further increase the accelerations (Christopoulos and Filiatrault 2006). For this reason, some 

research has been put into reducing the accelerations by weakening or softening the structure. The 

resulting increase of inter-story drifts can then be countered by supplemental damping (Afsharhasani 

and Ahmadizadeh 2001; Cimellaro 2009). In this method the distribution locations and amounts of 

stiffness modifications and the distribution of supplemental damping is determined using an active 

control algorithm. This method is called the redesign approach by (Reinhorn, Lavan et al. 2009).  

 

In this study, a design methodology is proposed for passive control systems using the pole assignment 

algorithm. Unlike the previous research (Reinhorn, Lavan et al. 2009), the structural mass is kept 

unchanged as is the case in practice. This is in fact an extension of the work by (Afsharhasani and 

Ahmadizadeh 2001), where the LQR algorithm was used in the design of passive control system. In 

the design approach proposed herein, first an active control system is designed for a uniformly 

softened structure using the pole assignment algorithm. Then, a passive structural control system is 

designed by using the properties of the actively controlled structure. For these properties to be 

achievable merely by reduction of stiffness and a passive control system with viscous fluid dampers, 

the pole assignment algorithm is slightly modified. In order to show the application of the proposed 

method and its benefits, an example five-story structure is designed using this approach, and its 

response is compared to those obtained using other design methods. 

 

 

2. CONCEPT OF SOFTENING AND DAMPING 

 

The simultaneous use of weakening or softening and damping allows for control of both drifts and 

accelerations. To illustrate, consider a single-degree-of-freedom as shown in Figure ‎2.1 which is 

excited by a ground motion. 

  

 
 

Figure ‎2.1. Weakening and softening in a single-degree-of-freedom system. 

   
Assuming linear behavior for the columns which support the mass m. according to Newton’s second 

law the acceleration of mass m is defined as:  

  

          
elastic

f
a =

m
 (2.1) 

 

where f is the force developed in column due to the excitation. Since the structural mass m is 

generally constant, one can reduce f by reducing the column stiffness for decreasing the acceleration 

when the column behaves elastically. Alternatively, when the column is to behave nonlinearly, 

reducing the column strength can lead to a reduced column force, thus reducing the accelerations. In 

Figure ‎2.1c it can be seen that simultaneous softening and weakening of the column have occurred, to 

reduce and limit the acceleration response of the mass. This in turn leads to an increase in the 



displacement response, which can be countered by supplemental damping. However, the design 

procedure is more complicated in multi-degree-of-freedom structures, since the proper locations and 

amounts of stiffness and damping modification are not known. To address this problem, active control 

algorithms can be used to determine the desired structural properties, thus providing the necessary 

information on the required modifications in the stiffness and damping of the structure and their 

locations. 

 

 

3. ACTIVE CONTROL USING POLE ASSIGNMENT ALGORITHM 

 

As the first step in the proposed design procedure, pole assignment algorithm is used to design an 

active control system for the structure. The equation of motion for a linear multi-degree-of-freedom 

subjected to an external excitation (such as an earthquake) is given by: 

 

          
t t t t tMx( )+Cx( )+K x( )=Du( )+Ef( )  (3.1) 

 

where x(t) is the displacement vector, M is the mass matrix, C is the damping matrix, u(t) is the control 

force vector, f(t) is the excitation matrix, and D is the control force location matrix. For lumped-mass 

shear buildings considered in this study, matrices M and K are diagonal and tridiagonal, respectively. 

The damping matrix is also tridiagonal in classically-damped passively-controlled systems. In the 

above equation E is excitation location matrix. Eqn (3.1) in the state-space form can be written as: 

 

          
t t t tz( )=Az( )+Bu( )+Hf( )  (3.2) 

 

in which  
T

t t tz( )= x( ) x( ) , A, B and H are state variables, system matrix, control location and 

excitation location matrices, respectively. These matrices are defined as: 
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where N  is the number of degrees of freedom of the system or the number of stories in shear buildings. 
 

Poles of the uncontrolled system are in fact the eigenvalues of the system matrix A defined in Eqn 

(3.3), which determine the modal frequencies and damping ratios of the original structure. In the pole 

assignment algorithm, the control forces are selected such that the poles of the structure are moved to 

new positions, usually to increase the damping, and move the natural frequencies away from expected 

excitation frequencies. Assuming that the control forces are given by: 

 

          
t tu( )=G z( )  (3.6) 



 

in which G is control gain matrix,  Eqn (3.2) can be rewritten as: 

 

          
t t tz( )=( A+BG)z( )+Hf( )  (3.7) 

 

That is, the control forces result in a change in system matrix from A to A+BG. By comparing these 

two matrices, the modifications in the structural properties resulting from the control forces can be 

determined. Hence, the problem of design of the passive control system using the proposed procedure 

consists of two major steps; first the designer needs to determine the suitable locations of new 

structural poles in the complex plane, and determine the required control logic for the system to have 

the prescribed eigenvalues. Second, the resulting modifications of structural properties should be 

determined, and applied by a passive control system that can only modify the structural stiffness and 

damping. That is, the modifications in the structural stiffness and damping should result in a new 

system matrix newA =A+BG . 

 

A simple method to move the structural poles to the desired locations proposed by (Soong 1990) is as 

follows. For the new system to possess the prescribed eigenvalues jpole , the following set of 

determinant equations should be satisfied: 

 

          
j 2Npole 0×I - A-BG =  (3.8) 

 

which can be rewritten as: 

 

          
j 2N 2N jpole pole 0( ×I - A )( I - ψ ( )G )=  (3.9) 

 

where: 

 

          

1
j j 2Npole pole -

ψ( )=( ×I - A) B  (3.10) 

 

Since jpole are not generally the same as the eigenvalues of the original open-loop system: 

 

          
j 2Npole 0×I - A  (3.11) 

 

Hence, Eqn(3.9) leads to: 

 

          
2N jpole 0I -ψ( )G =  (3.12) 

 

Again, this equation can be rewritten as: 

 

          
j 2N j N jpole pole pole 0Δ( ) = I -ψ( )G = I -G ψ( ) =  (3.13) 

 

For the 
thj eigenvalue jpole , one way to satisfy Eqn (3.13) is to entirely make the elements of a 

column or a row of jpoleΔ( )   zero. This yields the necessary number of equations governing the 

control gains that   move any of the 2N poles of the system to desired locations (Soong 1990).  

 

Using this method, all unknown parameters in matrix G will be found, but the resulting gain matrix is 



not unique, since it depends upon the choice of columns of jpoleΔ( ) . This simple method, however, 

does not necessarily result in modifications in the structural stiffness and damping that can be directly 

applied using passive control systems. Ideally, the required stiffness and damping matrices of a 

passively-controlled shear building (extracted from newA ) should be tridiagonal.  

 

In the proposed design method, the applicability of the structural property modifications by a passive 

control system is ensured by selecting a control gain matrix G is of the following form: 

 

          
 1 2G= G G  (3.14) 

   

 
            

2;

1 1

2 2 2 2

3 3 3 3

N N N N

-g 0 0 0 -g 0 0 0

g -g 0 0 g -g 0 0

0 g -g 0 0 g -g 0

0 0 g -g 0 0 g -g

   
    
   
    
   
   
       

1G = G =  (3.15) 

 

The above gain matrix leads to:  
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Here, it is assumed that control devices are installed in all stories as shown in Figure ‎3.1 for a three-

story structure. The matrix D can then be written as: 
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Figure ‎3.1. Distribution of the actuators in the three-story structure 

 

Therefore, the modifications of the damping and stiffness properties of the structure are given by: 
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It is seen that the matrices addedK and addedC are tridiagonal and symmetric, and hence of a form that 

can be applied by only modifying the stiffness and damping of the stories. In addition, the above 

selection of gain matrices produces the same number of unknown parameters as the poles of the 

system, yielding a unique set of gains. That is, all unknown parameters can be found by substituting 

each pole of the controlled system into the Eqn(3.13) . 

 

As mentioned earlier, the location of the poles of the controlled structure is central to the resulting 

performance. One way of selecting the poles for the controlled structure is simply using the site design 

spectrum, which helps determine the required amount of damping and suitable frequencies for the 

structure. The poles can then be fine-tuned to meet the design requirements. On the other hand, since 

the optimum structural performance is sought in this study, the new locations of poles are determined 

using a performance index. For this purpose a performance index is defined as a weighted combination 

of maximum drift and maximum absolute acceleration response of the structure: 

 

 
          

maximum drift of controlled structure maximum  accelarationof controlled structure
PI=α +β

maximum drift of uncontrolled structure maximum  accelaration of uncontrolled structure
 (3.20) 

 

where weighting constants α  and β show the relative importance of acceleration and displacement 

response of the controlled structure and are chosen accordingly.  

 

In order to minimize the above performance index, the following procedure is used. First assume that 

the poles of the uncontrolled structure are: 

 

 
          

2
j j j j j j jpole = a ± b × i =-ξ ω ± i ×ω 1-ξ ; j =1:N  (3.21) 

 

with jξ and jω being the damping ratio and natural frequency of the thj  mode. The frequencies and 

damping ratios of the controlled structure are defined as:  

 

 
          

j j j j j jξ = n×n ×ξ ;ω = m ×ω   (3.22) 

 

in which the index j denotes the mode number, and n , jn and jm  are constant parameters that govern 

the new dynamic properties of the structure. Hence, for the controlled structure the poles are defined 

as: 

 

 
          

j j 2
j j j j j j

2
j

b ×m ×i
pole =( n×n ×m ) a ± ( × 1- ( n×n ×ξ ) ) ; j =1: N

1- (ξ )
  (3.23) 

 



that shows the effects of the parameters n and m on the poles. In order to optimize the performance 

and minimize the index given by Eqn (3.20), first, the parameter n in Eqn (3.23) is modified iteratively 

until finding a minimum  PI. In each iteration, poles are recalculated using the trial n, and matrix G is 

determined by solving the corresponding system of 2N equations and 2N unknowns, using Newton-

Raphson algorithm (Neumaier 2001). The control force vector is then computed according to Eqn 

(3.6) and is applied to the structure subjected to the design earthquake(s) to determine the controlled 

performance and the corresponding PI. Next, Parameters jn and jm are chosen to further reduce the PI 

to its least possible value. This way, it is ensured that the poles are moved to their optimum locations 

in the complex plane. 

 

 

4. DESIGN OF THE EQUIVALENT PASSIVE CONTROL SYSTEM 

 

Using pole assignment control algorithm explained in the previous section, the new system matrix can 

be expressed as: 

 

          

N N 
 
  

new -1 -1
new device

0 I
A =A+BG=

-M K -M (C +C)
 (1.1) 

 

where matrix G is obtained using the procedure describe in the preceding section. By pre-multiplying 

the mass matrix to the second row of the above matrix, the modified stiffness and damping matrices of 

the passively-controlled structure can be obtained. It is expected that using these structural properties, 

the passive control system will result in a performance close to that obtained by the actively control 

system. However, the flexibility of the braces that are used to connect the dampers will reduce their 

improving effect on the structural performance (Ahmadizadeh 2007). In this study, it is assumed that 

the braces are designed for the nominal damper force capacity.  

 

 

5. CASE STUDY– MDOF 5-STORY SHEAR BUILDING  

 

In this section, five-story shear building is designed with the proposed method and the results are 

presented. The building structure is 15.0 meters high, and its plan dimensions are 25.0 meters (5 bays) 

by 18.0 meters (3 bays). The lateral force resisting system in both directions consists of moment 

resisting frames with pinned connections of the columns at the foundation level. Live and dead loads 

of each story are assumed to be 250.0 Kg/m
2 

and 500.0 Kg/m
2 

respectively. According to the Iranian 

Code of Practice for Seismic Resistant Design of Buildings (BHRC 2005), effective seismic mass for 

all stories are calculated to be 250.0 tons. The structure is assumed to be built on soil type II according 

to this code. The inherent damping of the structure is selected to be 5% of critical in the first two 

modes. The primary structure is designed according to the AISC-LRFD manual (AISC-LRFD 2001) 

this study, the design earthquake is selected to be 1940 El Centro earthquake (Mw=6.9, PGA=0.319g) 

with acceleration amplitude normalized to 0.4g. 

 

In the design of the active control system, the actuator forces are limited to 1500 KN and the 

performance index PI is used with weighting coefficients of α=0.7 and β=0.3 .The initial uniform 

reduction in the structural stiffness is selected to be 30% as suggested in (Afsharhasani and 

Ahmadizadeh 2001). The control systems studied and their corresponding abbreviations are listed in 

Table ‎5.1. It should be noted that the optimal design of passive control system is performed by directly 

minimizing the performance index through several trial values of damping coefficients (Soong and 

Dargush 1997). 

 

 

 

 



Table ‎5.1. Cases of control systems for the five-story structure 

 

Uncontrolled 

Uncontrolled 

+ 

Softening 

Active 

+ 

Softening 

Active 

Without 

Softening 

Equivalent 

passive 

+ 

Softening 

Equivalent 

passive 

without 

Softening 

Optimal 

passive 

U US AS A PS P O 

 

Table ‎5.1 represents the maximum inter-story drifts and maximum absolute accelerations in all stories 

in each of the control cases. As shown, softening causes inter-story drifts to increase and absolute 

accelerations to decrease (comparing U with US). The best performance among all control cases is 

seen to be that of AS. In this case the inter-story drifts and absolute accelerations are observed to be 

the smallest. The next best performance can be seen in the case of PS, which is the equivalent passive 

system for the AS system. In this case, the maximum inter-story drift that occurs in the first floor is 

seen to be smallest after the actively controlled system AS. As shown, some performance degradation 

in the equivalent passive system can be recognized compared to the active system, which is partly 

attributed to the finite stiffness of the braces used for the installation of dampers. The brace flexibility, 

on the other hand, does not have a significant effect on the performance of the active control system. 

 

   
Figure ‎5.1. The maximum absolute acceleration and inter-story drift in the five-story structure 

 

By comparing the control cases O and PS, it can be observed that a better performance is achieved 

using the PS system compared to case O, showing the optimal performance of control system designed 

using the proposed method. Some of the above-mentioned improvement stems from the reduction of 

structural stiffness as dictated by the active control algorithm. However, it should be noted that a trial-

and-error process may eventually reach the results of any design method, and the advantage of the 

proposed method may not be clear in this regard. On the other hand, by using the pole assignment 

algorithm and modifying the structural stiffness, the proposed procedure provides a more versatile 

means for the educated modification of the structural properties towards the desired performance. 

Table ‎5.2 lists the values and the distribution of the softening and added damping in the structure in 

different control cases. By comparing cases P and PS, it is evident that the larger stiffness of most 
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stories in the case P has resulted in larger absolute accelerations of this case, shown in Figure ‎5.1. As 

another observation, the values of supplemental damping in the structure in the case O are generally 

larger than those of PS case. This can be partially attributed to the increased level of forces in the 

structure due to higher stiffness that consequently would require larger forces for control.  

 
Table ‎5.2. Damping and stiffness values of control systems 

O PS P US U 
Cdevice 

(KN.s/m) 

K total 

(KN/m) 

Cdevice 

(KN.s/m) 

K total 

(KN/m) 

Cdevice 

(KN.s/m) 

K 

(KN/m) 

 

C 

(KN.s/m) 

K  

(KN/m) 

C  

(KN.s/m) 

Floor 

NO. 

5906.4 150209.0 10713.9 285000.5 10452.1 142545.2 638.0 203636.0 762.6 1 

8520.0 178873.6 7199.8 244224.8 8529.4 240692.2 840.6 343846.0 1004.7 2 

7866.1 113954.1 6996.7 223772.9 9667.4 213594.5 746.0 305135.0 891.6 3 

9360.2 106124.8 4031.3 335062.1 7039.5 185594.5 648.2 265135.0 774.7 4 

12960.0 289443.8 5614.4 179362.5 3842.3 130768.4 596.9 186812.0 713.4 5 

 

Figure ‎5.2 and Figure ‎5.3 represents the device force histories of the first floor in the two cases of AS 

and PS. It can be seen that the actuator force reaches its predetermined maximum value of 1500 kN at 

some points in both cases. However, this occurs less frequently in the passive system, where the 

control forces seem to be generally smaller. This can be explained in that the active control forces 

serve for both stiffness and damping modifications of the structure. However, in the passive system, 

the strain-dependent restoring forces are directly included in the structure itself by modifying its 

stiffness, and the device forces are only due to supplemental damping. In other words, the portion of 

control forces that modify the story stiffness is omitted in the passive control system.  

 

 
 

Figure ‎5.2. Device force in the AS case (first floor) 

 

  

Figure ‎5.3. Device force in the PS case (first floor) 

 

 

6. CONCLUSIONS 

 

An alternative methodology was proposed for the design of optimum passive control systems using 

stiffness modification and viscous fluid dampers to reduce both the acceleration and displacement 

response. In this method, after uniformly reducing the stiffness, an active control system is designed 
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for the structure using the pole assignment algorithm. The resulting structural properties are then used 

to determine the desired properties of the passive control system that takes advantage of stiffness 

reduction and supplemental damping. In this design method, the poles of the structure can be relocated 

to appropriate positions to minimize the structural response (or a performance index), or simply by 

considering the required properties of the controlled structure according to the design goal. Although 

the design results are shown to be better than or close to those of optimum passive systems designed 

using the usual trial-and-error method, some performance degradation is expected in the process of 

replacement of the active control system by its passive equivalent. This is partly due to the finite 

stiffness of the braces that significantly affect the performance of passive dampers. The effectiveness 

of the proposed design approach is demonstrated in the performance comparisons of a five-story 

structure controlled using various methods. The method is shown to provide a practical means to 

modify the properties of the structure in the desired manner using passive control devices to achieve 

the design goals. 
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