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SUMMARY:

The response spectrum method is based on thetawfiof a suitable combination of the seismic pesdponses
of several single-degree-of-freedom oscillatorsresenting the modes of the analyzed structure.etifit
variants exist, associated with different ways afaunting for the simultaneity of peak responsephyfsically
distinct quantities. Peak simultaneity can be rigsty treated by the (hyper-ellipsoid) peak resparsvelopes.
Firstly, a novel interpretation of these envelofgeproposed, based on the notion of “coefficieritthe linear
combination of modal peaks”. Then, an algorithnowlhg the approximation of a hyper-ellipsoid by a
polyhedron is analyzed. Moreover, a procedure bagetie peak response envelopes is proposed toedstfitic
force fields equivalent to the seismic action. He tast part of the article, four different methouteluding the
hyper-ellipsoid envelopes and the equivalent stitice fields, are used to compute and comparetdted
reinforcement demands of a reinforced concretealingjl
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1. INTRODUCTION

The response spectrum method is a popular methageiefic structural analysis, based on the
assumption of linear elastic structural behavione Tseismic response is computed as a suitable
combination of the extreme responses to the giwthguake of several single-degree-of-freedom
oscillators, each one associated with one modéefnhalyzed structure. The main difficulty in the
application of this method is the definition of tbembination rules among modal peak responses to
get the global response of the whole structure. Wek-known Complete Quadratic Combination -
CQC (Der Kiureghian, 1979) defines a combinationpeik modal responses accounting for the
coupling effects due to close modes. Moreover,siiggerposition of the effects of different seismic
directions is usually made by a quadratic combimatiule or by the Newmark's combinations
approach (Newmark, 1975). Finally, the simultanemgsurrence of peak values of physically
different quantities (e.g. a normal effort and adieg moment in a beam section) was studied by
Gupta and Singh (1977), Leblond (1980), Menun aed Kureghian (2000a,b), among others. These
works contributed to the definition of the notiohhyper-ellipsoid peak response envelopich is
investigated here.

In the first part of the paper, a novel interprietabf thepeak response envelojgeproposed, based on
the notion of “envelope of the coefficients of fimear combination of modal peaks” (Martin, 2004),
named her@&-envelope. The relationship between thenvelope and the classical definition of peak
response envelopes (Menun and Der Kiureghian, 20Pp@adiscussed (Section 2). A discretization
procedure of a hyper-ellipsoid, based on the usanoénveloping polyhedron, will be presented in
Section 3: it is an extension of the method preskity Leblond (1980). Actually, this extended
discretization procedure was proposed by Vézin.¢R807) and the present paper discusses in more
detail some properties of this algorithm. Noticattiother discretization methods are suggested in
ASCE (2009). Then, tha-envelope is used to define several pseudo-actielerizelds, where each



field defines a probable distribution of accelems simultaneously acting on each point of a strect
during the given earthquake. These acceleratiaidsfiare used to define several static load cases
equivalent to the given earthquake (Section 4).

The second part of the article (Section 5) regadingsapplication of four variants of the response
spectrum method to a reinforced concrete struc(ir&uperposition of the peak modal responses in
each earthquake direction using the Complete QtiadCmmbination (CQC) method, followed by
"Newmark’s combinations” to obtain the global respe due to different earthquake directions; (ii)
Superposition of the peak modal responses usingCth€ method for each earthquake direction,
followed by quadratic combinations to consider #ffects of different earthquake directions and
permutations of generalized forces signs to esértia@ most critical envelope; (iii) Hyper-ellipsoid
envelope of simultaneous generalized forces; (ili& load cases defined by using modal linear
combinations of accelerations. The results are ematpin terms of the total reinforcement quantity
and of estimated peak responses for several dbeieats of the structure.

2. ANOVEL INTERPRETATION OF PEAK RESPONSE ENVELOPE S

In this Section, a new interpretation of peak resgoenvelopes is proposed, based on linear
combinations of modal response peaks. The notiofenfelope of the coefficients of the linear
combination of modal peaks” is introduced and camgavith the classical definitions.

2.1. Linear combinations of modal response peaks

Consider an N-degree-of-freedom linear and clalbgicdamped structure, for which N real
eigenmodes can be calculated. For seismic applitgtionlyn< N modes are usually retained, by
guarantying that the sum of effective masses ohthedes is high enough or introducing a pseudo-
mode. The seismic effects are estimated by corisgléhree earthquakes (represented by pseudo-
acceleration spectra), one per each directioa X y,z). For an earthquake in direction k, the 3N-

components displacement vectgy(t) can be written by a linear combination of modes:
u, (t)= [ui,x,u,fyx,...,uk“fx,utvy,u,f,y,...,uﬂy,ulkz,ui,z,...,ukN,z]T =X r(Opug (2.1)

where ¢, is the 3N-components eigenvector for made , is the participation factor for modeand

the earthquake directidnand ulk,x(y,z) is the displacement in the directigfy,z)of the nodd due to
the earthquake in the directimEach termu, , (t) =r;, (t) p; ¢, represents a structural displacement

proportional the-th mode shape. The time-functiap, (t) is the solution of dynamics equation of the
single-degree-of-freedom oscillator representirggrtioded, under the given accelerogra;lp(t):

F (0) + 28 @t (1) + afr,, (1) = -0, (t) (2.2)

where @) and ¢ are the pulsation and the damping coefficient &f thodei, respectively. When
(a1‘ ,fi) are known for a given mode, Eqn. 2.2 can be schretithe maximum absolute displacement
can be computed:

R = mta)«i,k (t)‘ =Sy (aﬁ’ ’E.) (2.3)
Observe that the use of Eqn. 2.3, instead-i,q(f= ma><{ri k(t)], leads to slightly conservative results
; Nl it

(Menun and Der Kiureghian, 2000a). The pseudo-acatbn becomess,, (w,¢)=a?S,, (@,&)-



Using Egns. 2.1 and 2.3, the displacement vegi) can be rewritten as a linear combination of the
modal peak displacement vectys, =R, Pig,:

Qk(t) = Zai,k(t)R,k Pix® = Zai,k(t)ui,k with  —1< ai,k(t): rié(t) <1 (2.4a)

i Kk

where ai’k(t) are named here “coefficients of the linear comiaamaof modal peaks”. The total
displacement due to the earthquakes in the threetuins reads:

u(t) =3 u(t)=> > a (O, (2.4b)

Let us consider a (generalized) fofdg, e.g. an axial force, a bending moment, etc. seetion or
element of the structure. By virtue of structuiakérity, one can always find a vectgrsuch that:

f)=d"ut)=2 0)=X X a,.0d"U, =X ¥ a WF, (2.5)

where F,, :ngi’k is the value off(t) corresponding to the peak displacement vetloy for the

modei and the directiok. Eqns. 2.4a,b show that at any titnéhe displacement of all points (nodes)
of a structure can be determined by a linear coatiuin of the modal peak displacement vectors.

Likewise, Eqn. 2.5 shows that a (generalized) fortg can be determined by a linear combination of
F. . using the same coefficients (t)

2.2. Hyper-ellipsoid envelope of linear combinatios coefficients @-ellipsoid)

In order to estimate the probable maximum valuthef(generalized) forcé, (t) due to an earthquake
in the directiork, one can use the Complete Quadratic Combinatien Kureghian, 1979):

fic max = /Zpij FicFix (2.6)
i

where p, is the modal cross-correlation coefficient betweéenmodes andj that can be calculated as
follows (Der Kiureghian, 1979):

b - 8/8¢ ww (W& +w & Juw,
ij -
(

af —a? | +4& & weg (af + o )+ dce? (€ + €7)

Thus, in the sense of probability:

)= a0 OF 4 € e or  al(t)F, <|FIHF, (2.7a & 2.7b)

" is the vector of the (time-dependent) combinaticmefficients,

where a, =[a1,k!a2,k!"'nn,k
F,= [Flk, Fz,k,...,Fn,k]T and H =|p, |. The condition in Eqns. 2.7 can be extended ta#se of three

seismic directions using a quadratic combinatiof), of :



f(t) = Z fk(t) = Zzai,k(t)Fi,k = fmax = \/Z szmax = \/ZZIOU I:i,ij,k (288.)

or
H 00
alt) F<FTAE  With a=[a7 a7 a1[ E=[EI,E§,EI]T andf=|o H o (2.8b)
0 0 H
From Eqgns. 2.7b and 2.8b, supposing that the métrig invertible, one can prove that:
aiH'a,<1 and g'H'as<1 (2.9a & 2.9b)

Egns. 2.9a,b give the definition of two hyper-abpls with dimensions n and 3n. We name tlagm
ellipsoid and a-ellipsoid respectively. Each poing belonging to thea-ellipsoid represents a
probable linear combination of modal response peaks consequence, the set of points insiderthe
ellipsoid defines all the probable configurations of thedtire during the seismic event. The previous
formulas can be easily modified when a “pseudo-rheaxeonsidered (Vézin et al, 2007).

2.3. Hyper-ellipsoid envelope of generalized forcé€B-ellipsoid)

In a given part of a structure (e.g. a beam sec®)n different generalized forces may act
simultaneously (e.g. the normal force N and thedi@nmoment M). In this paragraph, the problem of
the simultaneity of the peaks of these differemtds is dealt with. In detail, we are interestedhim
definition of the “envelope” of all probable simatteous generalized forces (e.g. all the probable
couples (N,M) in a section S) due to a given eardlkg. Recall that the expressions given in the
previous Section only concern the case of a singlgeneralized) force. Let

X, (t) = [flk(t), Fore (Uheeos F o (t)]T be a vector op simultaneous (generalized) forces due to an easte

in direction k, ~and let R :l_ELk’EZ,k""Ep,kJ be a matrix whose columns
Fok= [Flm’k, Fz,myk,...,an]T are the vectors of peak modal values of the fereg). By virtue of
linearity, one can prove that:

X X, % =X (Ri HR ) 'x, =a,H "a, <1 (2.10a)

whereék = BZEBk and the inequality follows from Eqn. 2.9a. In tase of three seismic directions,

one can also prove that:

X'X7'x =a"H @ <1 (2.10b)

where x = Zlk and x = Zl(k . Egns. 2.10a,b, considered as identities, defimehyper-ellipsoids
Tk k
of dimensionp, that we naméd-ellipsoid andf-ellipsoid, respectively. Each point of tHeellipsoid

corresponds to a probable combinationpadimultaneous generalized forag), f,(t)...., f,(t). Edn.

2.10b implies that a poink of the f-ellipsoid corresponds to one and only one paintof the a-
ellipsoid (Egn. 2.9b).

3. POLYHEDRAL APPROXIMATION OF HYPER-ELLIPSOID ENVE LOPES
For practical application purposes, the numberoofilmnations of simultaneous generalized forces (in

other words, the number of chosen points onfibllipsoid surface) should be relatively small. The
approach proposed by Leblond (1980) for casesandp=3 consists in replacing the hyper-ellipsoid



by a polyhedron enveloping the hyper-ellipsoid. éthliscretization approaches are proposed in
ASCE (2009).The extension of Leblond’'s approaclhto general case with>3 dimensions can be
made according to the following five-step procedure

Step 1: Diagonalize the matriX defining the f-ellipsoid i.e. find the diagonal matrix

Y =diag(A,, A,.,..., p) and the matrixD such that X = DYD". Notice that AnAy,. A, are the
eigenvalues ofX .

Step 2: Transform thd-ellipsoidinto a hyper-sphere with unit radius by the affini:0° — 0" such
thatu: SV =Y™"2.s

Step 3: Define a polyhedron havingx 2P points enveloping a unit hyper-sphere:

vi=[taza,.. #1..2a]  with j=1.2°, i=1.,p and a=v2-1=042
(the component of ") equal to plus or minus 1 is theh)

Step 4: Transform the polyhedron enveloping the hyper-spli8tep 3) into a polyhedron enveloping
the hyper-ellipsoid in the diagonalization referenc

sV=y"2 yO=[ra i safl,..x Ai,...ia\/Z]T

Step 5: Transform the polyhedron defined at Step 4 infmlyhedron enveloping the hyper-ellipsoid
in the original referencex!’ = D" 1.

Actually, this procedure is equal to the one prepdsy Leblond (1980) for the cage3. However, in
the cas@>3, it is necessary to prove that no intersectioruccbetween the unit hyper-sphere and the
polyhedron defined at above step 3 This correspaadcrove that each one of thegper-planes

defined by thep pointsy AV ?) (j=1,...,%) has a distance from the reference p@ngreater
than 1. For th¢th hyper- plane, th|s distance can be calculated |ksie:

dov (o) de‘i\/fL VOO v O) L() VO
R e e

Table 1. Distance from the reference point to the hypengldefined by the pomts 2 V(J °)

p 2 3 4 5 6 7 8

dov®v® vi@) | 1 1.06 1.12 1.19 1.25 1.32 1.38

The distances are greater than 1. This meanshthatdlyhedron is always larger than the unit sphere
Hence, this algorithm is conservative. The margiodmes larger when the dimension p increases.

4. EQUIVALENT STATIC LOAD CASES

For some applications, it may be useful to repreflem seismic action on a structure by one (or
several) equivalent static load(s), usually defiaé@dach structural node as the product between the
nodal mass and suitable nodal acceleration(shignSection, a procedure is proposed to define such
acceleration fields using therellipsoid and a particular case bellipsoid From Egn. 2.4a and Egn.
2.4b, one can define the displacemé(t), the pseudo-acceleraticai(t) and the inertia forcepl((t)

in the direction x associated with a ndd# the structure:



U (t)= 22 @ OU s (2.11a)
avl<(t) = Zzai,k (HefU :,k,x :Zzai,k (t)A‘l,k,x (2.11b)

P (t) = Zzai,k(t)ml WU =Zzai,k ()Pl (2.11c)

Analogous expressions can be written for directipasd z, leading to the following nodal force diel
at the generic time

PO =22, (O, (2.12)

P, P .,Pi’NkVZ]T is the vector of the modal peak

ikz' ' ikzrt
forces. Usually, the combination coefficients aot known and the problem to hand is the definition
of a superposition rule of the modal peak forpgs in each direction. A possible procedure is the use

of the Complete Quadratic Combination. Thus, faheaarthquake direction k, there is a force field
P, = D2 s P oo P Wit = S p,P' P . to be applied to the structure. The Newmark’s
max ij I ikk jkk

rule can be used to combine the force fields aatetwith the three earthquake directions.

WhereEi,k:[Pl PP Py PA pN

ikx? Uikxrer x? U iky? ikyrttrtiky?

A novel procedure to define a static load for s&samalysis is proposed hereinafter, using theonoti
of modal linear combinations angtellipsoid First, observe that at a given timhethe vector of
forcesE(t) in Egn. 2.12 depends on the veeté) and corresponds to one static load case. Moreover,

it is proven in Section 2.2 that thecusof probable values of the combination coefficieafs) is the

a-ellipsoid defined by Eqn. 2.9b. As an equality, for n modhks,a-ellipsoid belongs to the space of
dimension 3n. Its polyhedral envelope would ha@mex2*" points. This number is too large for
practical calculations, especially for multi-modaiuctures, whose number n of significant modes can
be very important. Actually, instead of finding #le pointsa approximating thea-ellipsoid a
preliminary selection of thenost important onegaccording to some engineering criteria) could be
performed. For instance, it is possible to look tlee 6 pointsa belonging to thex-ellipsoid and
maximizing the total shear seismic forceg(t),F, (). F,(t) and momentsv_(t) M, ()M, (t) at the
base of the building (or at another given levelttté structure). However, these six cases do not
account for coupling effects between these six gaized forces. Actuallya complete description of
probable seismic forces at the base of the buildsygrovided by the corresponding 6D hyper-
ellipsoid (named here T-ellipsoidgach pointT =[FX, F,F,M Myy,MZZ]T of this T-ellipsoid
represents one probable combination of the totae®and moments at the base. Hence, it is proposed
to look for the pointgx fulfilling Eqn. 2.9band such that the corresponding vector of total foiaes
moments at the base belongs to T-ellipsoid. Intmmcthe T-ellipsoid can be approximated by a 6D-
polyhedron with 384 vertices and the numbergofpoints to compute is 384. This is made by the
analytical procedure proposed hereafter. Firsteasthat a poinT of the T-ellipsoid can be written

as a function otr :

XX

Q,QIZQ]T (2.13)

- — T
For instance, the components af _[C:Lx,x7Cz,x,x""’cn,x,x’Cl,y,x’CZ,y,x""’Cn,y,x’Cl,z,x’C2,z,x""’cn,z,x] ,



which has dimension 3n, are equaldQ :Zpi'kx . The proof is straightforward and is omitted for
|

brevity. This means that,,  is the total horizontal force (for all the nodeslicated by the inde in
thex direction, for the modeand due to an earthquake in the direction k.

Let us consider now one of the 384 known vertideth® polyhedron enveloping the T-ellipsoid. We
name this verteA:[a a,a,a,,a,,a ]T. Then, it is possible to prove that the point

X1 Gy s Gz Gy Ayy s Gzz

5=A/,/AT§’1A=[bX,by,bz,b b,.b,,|" lies on the surface of the T-ellipsoid. Moreové, is the

XX yy!
intersection between the T-ellipsoid and the segntieking the origin and the pointA. As a
consequence, the problem that we have to solveearitten as follows:

Find @ suchthat ¢"H 'g=1 and T=T(a)=B (2.14)

This means thatr must be a point of the-ellipsoid (of dimension 3n) ang(g) must be a point of

the 6D hyper-ellipsoid of the total forces and matagT-ellipsoid). The solutiom of the problem
(2.14) is also the solution of the following optation problem:

Find @ suchthat g = ARG(max B 1[(I(Q))Té_15]j (2.15)

Oa:a"H a=

According to the Lagrange multiplier method, Eqri.52is equivalent to:
Find @ such that g = ARG(mang l(l’(g))Té'lB + )I(QT H a —l)D

POSEQ:[Q X,gy,gz.gxx&yy,g:zz]é’lg. This leads to

d=stlche and o4 NS (2.16a & 2.16b)
Je He

The vector g, corresponding to the poirA on the polyhedron reads:

a,=a, A’ XA (2.17)

Each vectora , can be introduced into Eqn. 2.12 in order to defirstatic load field to be applied to

structural nodes. Actually, there are 384 poiAtsthus 384 vectorgr , and 384 static load cases. All

these load cases reproduce some probable combisatidhe three total seismic forces and moments
at the building basis.

5. APPLICATION

In this part, seismic effects to a building in feitted concrete will be studied using the followfogr
approaches:
1. Complete Quadratic Combinations of the modapaases in one direction and Quadratic
Combination of three directions (CQC-Quadratic Coration),
2. Complete Quadratic Combinations of the modapaases in one direction and Newmark’s
Combinations of three directions (CQC-Newmark’'s Gomations),
3. Hyper-ellipsoid envelope of simultaneous shalllieam) efforts in each element of the model,
i.e. x, :[N Ny Nyio M MM,MW]T according to the notation of Sect. 2.3, where

(N, N,,. ny) are membrane efforts anm_,M

xxk 1 xy,k ? xxk 1

' M,,) are bending moments,



4. Static load cases using modal linear combinatanmd considering 384 probable combinations
of three total forces and three total momentseabtse of the structure (see Section 4).

Observe that in the ®1and 2 procedures, the simultaneity of the generalizetbel® is an
approximated way. The®3rocedure properly takes into accounts simultgraitgeneralized forces

of each element of the structure. THeptocedure is expected to consider a large nuniberbable
states of the structure affecting the reinforcenummhand. A comparison of these four approaches in
terms of total amount of reinforcement demand kellcarried out.

5.1. Structure description and modal analysis

Let us consider a reinforced concrete building wiite following dimensions: width 16.5m, length
27.5m, height 31.94m (Fig. 1a). The finite elemenftware used for the structural analysis is
HERCULE. The number of nodes and (shell or beaetnehts is 14400 and 16900, respectively. The
soil under the foundation raft is modeled by acdetertical and horizontal linear elastic springster

the modal analysis (Table 2), 35 modes plus theiqusenode are retained (n=36). A spectrum
analysis is then carried out using the spectruiigf 1b. For the earthquake in vertical directitrg
spectrum ordinate is reduced by a factor equal3oThe load cases used in this example include the
permanent load (G) and the seismic load due th@aakes in directions x, y and z.

Horizontal directions

—5%
7%

01 10 100 10%
—20%

——15%|
—30%

Figure 1. (a) Finite element model. (b) Pseudo-acceleratpmattrum in horizontal directions (acceleration
(m/s) vs. frequency (Hz))

Table 2. Important retained modes

Frequency Period Damping Percentage of effective mass
N° mode (Hz2) (s) coefficient (%)
(%) X Y

1 441 0.2268 6.6 55.9 0.4 0
2 6.18 0.1618 6.7 0.2 59.7 0
3 9.35 0.107 6.9 1.6 0.3 0.3
4 11.39 0.0878 7.2 19.1 0.2 2.9
5 13.56 0.0738 9.2 1.1 0.2 35.1
6 16.14 0.062 7.4 0.5 171 14
7 16.54 0.0605 10.2 0.1 1.8 34.1
35 39.18 0.0255 7.1 0.2 0.3 15

Total of considered modes 82.4 84.4 82.7

5.2. Comparison of four approaches of seismic effbcalculation

Once the efforts are known for each element ohtbdel, the reinforcement can be determined. Table
3 gives the ratios between the total reinforcenfenhd by the four approaches, considering the



“CQC-Newmark’s Combinations” as reference methode ©an observe that the result obtained using
the hyper-ellipsoid is very close to the refereane. The reinforcement amount obtained by thecstati
load cases (T-ellipsoid, Section 4) is more impartdhe difference between this approach and the
hyper-ellipsoid envelope (third case in Table 3) ba explained by the fact that the 6-dimension T-
ellipsoid is discretized by a polyhedral envelopkick is larger than the original T-ellipsoid. As
expected, the “CQC-Quadratic Combination” givesrttaximum reinforcement demand.

Table 3. Comparison of the four methods of seismic effaitalation in terms of reinforcement quantity

CQC — Newmark | CQC - quadratic Hyper-ellipsoid Equivalent static
combinations combination envelope load case

Total reinforcement

: 1 1.50 0.99 1.14
ratio

Hereinafter, the difference between the four apgrea will be illustrated by plotting the points
representing the combinations of the six effartsn, N, .M .M M in two shell elements of the

structure. A 6D space should be considered. Fofirifie elements indicated in Fig. 2, the projecto
of these efforts in the planes N, andN, .M, , are shown in Figs. 3 and 4.

XX

Xx1

Element 10337

EIemen{ 6692

Figure 2. Elements considered
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50 100

Nyy
Myy
8
m
X
e

-40

Nxx Nxx

« Hyper-ellipsoid = CQC-Newmark's Combinations + Hyper-ellipsoid = CQC-Newmark's Combinations
m CQC-Quadratic Combination  x Equivalent static loads m CQC-Quadratic Combination ~ x Equivalent static loads

Figure 3. Distribution of forces — element 6692

Figs. 3 and 4 show that (i) there are points okthiby the “equivalent static load” procedure of
Section 4 which “envelope” both the points of thgdr-ellipsoid envelope of shell efforts and the
CQC-Newmark’s points. That explains why the reinament demand found by the equivalent static
load approach is more important than ones fountéhbyapproaches 2 and 3; (ii) the reinforcement
quantity obtained by the “CQC-Quadratic Combinadiois the most important. The efforts are
strongly overestimated especially when an importantelation between shell efforts exists; (iii)st
possible to reduce the reinforcement demand foundhb equivalent static load approach by a
different definition of the 6-dimension T-ellipsa@hvelope. Work is in progress on this subject.
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« Hyper-ellipsoid = CQC-Newmark's Combinations| « Hyper-ellipsoid = CQC-Newmark's Combinations
m CQC-Quadratic Combination ~ x Equivalent static loads m CQC-Quadratic Combination  x Equivalent static loads

Figure 4. Distribution of forces — element 10337

6. CONCLUSION

In the first part of the paper, a novel interprietabf the so-called (elliptical) peak responseetopes
(Menun and Der Kiureghian, 2000a) has been devdlopsing the notion of “envelope of the
coefficients of the linear combination of modal k&a(Martin, 2004). Moreover, the properties of an
algorithm for the discretization of a peak resporseelope with a generic dimension have been
discussed. Finally, using the peak response enwedgproach, a procedure has been proposed to
define several static load cases equivalent tcséemic action. In the second part of the paper, th
reinforcement demand for a reinforced concretedingl is computed using four different procedures
based on the modal spectrum method. The first praaches, the “CQC-Quadratic Combination”
and the “CQC-Newmark’'s Combinations”, are classica@thods of combining the peak modal
responses coming from the response spectrum mefhuaal.third procedure is the peak response
envelope method (Menun and Der Kiureghian, 2000a)ied on the membrane and bending efforts
of each shell element of the finite element modék last procedure is based on the equivalentstati
load fields defined according the new method predas the paper. As expected, the approach called
“CQC-Quadratic Combination” gives the largest reicement demand. For the example considered
here, the classical “CQC-Newmark’s Combinationstl dhe peak response envelope method give
almost the same total reinforcement demand. Thé/&gat static load fields procedure leads to a
reinforcement demand higher than the “CQC-Newmafk&nbinations”. Work is in progress to
improve the definition of the discretization algbm used to approximate the hyper-ellipsoids.
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