
Comparison of several variants of the response spectrum 
method and definition of equivalent static loads from 
the peak response envelopes 
 
 
Q.S. Nguyen, S. Erlicher & F. Martin 
EGIS Industries, 4 rue Dolorès Ibarruri, TSA 50012,  93188 Montreuil cedex, France. 
 
 

 

 
 
SUMMARY:  
The response spectrum method is based on the definition of a suitable combination of the seismic peak responses 
of several single-degree-of-freedom oscillators representing the modes of the analyzed structure. Different 
variants exist, associated with different ways of accounting for the simultaneity of peak responses of physically 
distinct quantities. Peak simultaneity can be rigorously treated by the (hyper-ellipsoid) peak response envelopes. 
Firstly, a novel interpretation of these envelopes is proposed, based on the notion of “coefficients of the linear 
combination of modal peaks”. Then, an algorithm allowing the approximation of a hyper-ellipsoid by a 
polyhedron is analyzed. Moreover, a procedure based on the peak response envelopes is proposed to define static 
force fields equivalent to the seismic action. In the last part of the article, four different methods, including the 
hyper-ellipsoid envelopes and the equivalent static force fields, are used to compute and compare the total 
reinforcement demands of a reinforced concrete building. 
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1. INTRODUCTION 
 
The response spectrum method is a popular method of seismic structural analysis, based on the 
assumption of linear elastic structural behavior. The seismic response is computed as a suitable 
combination of the extreme responses to the given earthquake of several single-degree-of-freedom 
oscillators, each one associated with one mode of the analyzed structure. The main difficulty in the 
application of this method is the definition of the combination rules among modal peak responses to 
get the global response of the whole structure. The well-known Complete Quadratic Combination - 
CQC (Der Kiureghian, 1979) defines a combination of peak modal responses accounting for the 
coupling effects due to close modes. Moreover, the superposition of the effects of different seismic 
directions is usually made by a quadratic combination rule or by the Newmark’s combinations 
approach (Newmark, 1975). Finally, the simultaneous occurrence of peak values of physically 
different quantities (e.g. a normal effort and a bending moment in a beam section) was studied by 
Gupta and Singh (1977), Leblond (1980), Menun and Der Kiureghian (2000a,b), among others. These 
works contributed to the definition of the notion of hyper-ellipsoid peak response envelope, which is 
investigated here. 
 
In the first part of the paper, a novel interpretation of the peak response envelope is proposed, based on 
the notion of “envelope of the coefficients of the linear combination of modal peaks” (Martin, 2004), 
named here α-envelope. The relationship between the α-envelope and the classical definition of peak 
response envelopes (Menun and Der Kiureghian, 2000a,b) is discussed (Section 2). A discretization 
procedure of a hyper-ellipsoid, based on the use of an enveloping polyhedron, will be presented in 
Section 3: it is an extension of the method presented by Leblond (1980). Actually, this extended 
discretization procedure was proposed by Vézin et al. (2007) and the present paper discusses in more 
detail some properties of this algorithm. Notice that other discretization methods are suggested in 
ASCE (2009). Then, the α-envelope is used to define several pseudo-acceleration fields, where each 



field defines a probable distribution of accelerations simultaneously acting on each point of a structure 
during the given earthquake. These accelerations fields are used to define several static load cases 
equivalent to the given earthquake (Section 4).  
 
The second part of the article (Section 5) regards the application of four variants of the response 
spectrum method to a reinforced concrete structure: (i) Superposition of the peak modal responses in 
each earthquake direction using the Complete Quadratic Combination (CQC) method, followed by 
”Newmark’s combinations” to obtain the global response due to different earthquake directions; (ii) 
Superposition of the peak modal responses using the CQC method for each earthquake direction, 
followed by quadratic combinations to consider the effects of different earthquake directions and 
permutations of generalized forces signs to estimate the most critical envelope; (iii) Hyper-ellipsoid 
envelope of simultaneous generalized forces; (iv) Static load cases defined by using modal linear 
combinations of accelerations. The results are compared in terms of the total reinforcement quantity 
and of estimated peak responses for several shell elements of the structure. 

 
 

2. A NOVEL INTERPRETATION OF PEAK RESPONSE ENVELOPE S  
 
In this Section, a new interpretation of peak response envelopes is proposed, based on linear 
combinations of modal response peaks. The notion of “envelope of the coefficients of the linear 
combination of modal peaks” is introduced and compared with the classical definitions.   
 
2.1. Linear combinations of modal response peaks 
 
Consider an N-degree-of-freedom linear and classically damped structure, for which N real 
eigenmodes can be calculated. For seismic applications, only Nn ≤  modes are usually retained, by 
guarantying that the sum of effective masses of the n modes is high enough or introducing a pseudo-
mode. The seismic effects are estimated by considering three earthquakes (represented by pseudo-
acceleration spectra), one per each direction ( zyxk ,,= ). For an earthquake in direction k, the 3N-

components displacement vector )(tuk  can be written by a linear combination of modes: 
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where 

i
φ is the 3N-components eigenvector for mode i, kip , is the participation factor for mode i and 

the earthquake direction k and l
zyxku ),(,  is the displacement in the direction x(y,z) of the node l due to 

the earthquake in the direction k. Each term 
ikikiki ptrtu φ,,, )()( =  represents a structural displacement 

proportional the i-th mode shape. The time-function )(, tr ki  is the solution of dynamics equation of the 

single-degree-of-freedom oscillator representing the mode i, under the given accelerogram ( )tug&& : 
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where iω  and iξ are the pulsation and the damping coefficient of the mode i, respectively. When 

( )ii ξω ,  are known for a given mode, Eqn. 2.2 can be solved and the maximum absolute displacement 

can be computed: 
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Observe that the use of Eqn. 2.3, instead of [ ])(max
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ki = , leads to slightly conservative results 

(Menun and Der Kiureghian, 2000a). The pseudo-acceleration becomes ( ) ( )iikdiiika SS ξωωξω ,, ,
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Using Eqns. 2.1 and 2.3, the displacement vector )(tuk can be rewritten as a linear combination of the 

modal peak displacement vectors 
ikikiki pRU φ,,, = : 
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where ( )tki,α  are named here “coefficients of the linear combination of modal peaks”. The total 

displacement due to the earthquakes in the three directions reads: 
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Let us consider a (generalized) force( )tf , e.g. an axial force, a bending moment, etc. in a section or 

element of the structure. By virtue of structural linearity, one can always find a vector d  such that:  
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where ki

T
ki UdF ,, = is the value of ( )tf  corresponding to the peak displacement vector kiU , for the 

mode i and the direction k. Eqns. 2.4a,b show that at any time t, the displacement of all points (nodes) 
of a structure can be determined by a linear combination of the modal peak displacement vectors 

kiU ,
. 

Likewise, Eqn. 2.5 shows that a (generalized) force ( )tf  can be determined by a linear combination of 

kiF ,  using the same coefficients ( )tki,α . 

 
2.2. Hyper-ellipsoid envelope of linear combinations coefficients (αααα-ellipsoid) 
 
In order to estimate the probable maximum value of the (generalized) force ( )tfk  due to an earthquake 

in the direction k, one can use the Complete Quadratic Combination (Der Kiureghian, 1979): 
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where 

ijρ is the modal cross-correlation coefficient between the modes i and j that can be calculated as 

follows (Der Kiureghian, 1979): 
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Thus, in the sense of probability: 
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where [ ]Tknkkk ,,2,1 ,...,, αααα =  is the vector of the (time-dependent) combination coefficients, 

[ ]Tknkkk FFFF ,,2,1 ,...,,=   and  [ ]ijH ρ= . The condition in Eqns. 2.7 can be extended to the case of three 

seismic directions using a quadratic combination of
max,kf : 

 



( ) ∑∑∑∑∑∑ ==≤==
k ij

kjkiij
k

k
k i

kiki
k

k FFffFttftf ,,
2
max,max,, )()( ρα                          (2.8a) 

or  

( ) FHFFt TT ~≤α , with [ ]TT
z

T
y

T
x αααα ,,= , [ ]TT

z
T
y

T
x FFFF ,,=   and  

















=
H

H

H

H

00

00

00
~          (2.8b) 

 
From Eqns. 2.7b and 2.8b, supposing that the matrix H is invertible, one can prove that: 
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Eqns. 2.9a,b give the definition of two hyper-ellipsoids with dimensions n and 3n. We name them αk-
ellipsoid and α-ellipsoid, respectively.  Each point α  belonging to the α-ellipsoid represents a 

probable linear combination of modal response peaks. As a consequence, the set of points inside the α-
ellipsoid defines all the probable configurations of the structure during the seismic event. The previous 
formulas can be easily modified when a “pseudo-mode” is considered (Vézin et al, 2007). 
 
2.3. Hyper-ellipsoid envelope of generalized forces (F-ellipsoid) 
 
In a given part of a structure (e.g. a beam section S), different generalized forces may act 
simultaneously (e.g. the normal force N and the bending moment M). In this paragraph, the problem of 
the simultaneity of the peaks of these different forces is dealt with. In detail, we are interested in the 
definition of the “envelope” of all probable simultaneous generalized forces (e.g. all the probable 
couples (N,M) in a section S) due to a given earthquake. Recall that the expressions given in the 
previous Section only concern the case of a single (generalized) force. Let 

( ) ( ) ( )[ ]Tkpkkk tftftftx ,,2,1 ,...,,)( =  be a vector of p simultaneous (generalized) forces due to an earthquake 

in direction k, and let [ ]kpkkk
FFFR ,,2,1 ,...,=  be a matrix whose columns 

[ ]Tkmnkmkmkm FFFF ,,,,2,,1, ,...,,=  are the vectors of peak modal values of the force)(, tf km
. By virtue of 

linearity, one can prove that: 
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where 

k

T
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RHRX =  and the inequality follows from Eqn. 2.9a. In the case of three seismic directions, 

one can also prove that: 
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where ∑=

k
k

XX  and ∑=
k

kxx . Eqns. 2.10a,b, considered as identities, define two hyper-ellipsoids 

of dimension p, that we name fk-ellipsoid and f-ellipsoid, respectively. Each point of the f-ellipsoid 
corresponds to a probable combination of p simultaneous generalized forces( ) ( ) ( )tftftf p,...,, 21

. Eqn. 

2.10b implies that a point x  of the f-ellipsoid corresponds to one and only one point α  of the α-
ellipsoid (Eqn. 2.9b).  
 
3. POLYHEDRAL APPROXIMATION OF HYPER-ELLIPSOID ENVE LOPES 
 
For practical application purposes, the number of combinations of simultaneous generalized forces (in 
other words, the number of chosen points on the f-ellipsoid surface) should be relatively small. The 
approach proposed by Leblond (1980) for cases p=2 and p=3 consists in replacing the hyper-ellipsoid 



by a polyhedron enveloping the hyper-ellipsoid. Other discretization approaches are proposed in 
ASCE (2009).The extension of Leblond’s approach to the general case with p>3 dimensions can be 
made according to the following five-step procedure: 
 
Step 1: Diagonalize the matrixX  defining the f-ellipsoid, i.e. find the diagonal matrix 

( )pdiagY λλλ ,...,, 21=  and the matrix D  such that TDYDX = . Notice that pλλλ ,...,, 21  are the 

eigenvalues of X . 

 
Step 2: Transform the f-ellipsoid into a hyper-sphere with unit radius by the affinity ppu ℜℜ a:  such 
that SYVSu .: 2/1−=a  

 
Step 3: Define a polyhedron having pp 2×  points enveloping a unit hyper-sphere: 
 
 ( ) [ ]Ti

j aaaV ±±±±= ,...,1,...,, , with pj 2,...,1= ,     pi ,...,1=     and    42.012 ≈−=a   

(the component of ( )i
jV  equal to plus or minus 1 is the i-th) 

 
Step 4: Transform the polyhedron enveloping the hyper-sphere (Step 3) into a polyhedron enveloping 
the hyper-ellipsoid in the diagonalization reference: 
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Step 5: Transform the polyhedron defined at Step 4 into a polyhedron enveloping the hyper-ellipsoid 
in the original reference: ( ) ( )i

j
Ti

j SDx = . 

 
Actually, this procedure is equal to the one proposed by Leblond (1980) for the case p=3. However, in 
the case p>3, it is necessary to prove that no intersection occurs between the unit hyper-sphere and the 
polyhedron defined at above step 3. This corresponds to prove that each one of the 2p hyper-planes 
defined by the p points ( ) ( ) ( )p

jjj VVV ,...,, 21  (j= 1,…,2p) has a distance from the reference point O  greater 

than 1. For the j-th hyper-plane, this distance can be calculated as follows: 
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Table 1. Distance from the reference point to the hyper-plane defined by the points ( ) ( ) ( )p

jjj VVV ,...,, 21  

p  2 3 4 5 6 7 8 
( ) ( ) ( )( )p

jjj VVVOd ...,,, 21  1 1.06 1.12 1.19 1.25 1.32 1.38 

 
The distances are greater than 1. This means that the polyhedron is always larger than the unit sphere. 
Hence, this algorithm is conservative. The margin becomes larger when the dimension p increases. 
 
4. EQUIVALENT STATIC LOAD CASES 
 
For some applications, it may be useful to represent the seismic action on a structure by one (or 
several) equivalent static load(s), usually defined at each structural node as the product between the 
nodal mass and suitable nodal acceleration(s). In this Section, a procedure is proposed to define such 
acceleration fields using the α-ellipsoid and a particular case of f-ellipsoid. From Eqn. 2.4a and Eqn. 

2.4b, one can define the displacement( )tul
x , the pseudo-acceleration ( )tal

x  and the inertia force ( )tpl
x  

in the direction x associated with a node l of the structure: 
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Analogous expressions can be written for directions y and z, leading to the following nodal force field 
at the generic time t: 
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forces. Usually, the combination coefficients are not known and the problem to hand is the definition 
of a superposition rule of the modal peak forces l

kkiP ,,
 in each direction. A possible procedure is the use 

of the Complete Quadratic Combination. Thus, for each earthquake direction k, there is a force field 
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ρ , to be applied to the structure. The Newmark’s 

rule can be used to combine the force fields associated with the three earthquake directions.  
 
A novel procedure to define a static load for seismic analysis is proposed hereinafter, using the notion 
of modal linear combinations and α-ellipsoid. First, observe that at a given time t, the vector of 
forces )(tp  in Eqn. 2.12 depends on the vector( )tα  and corresponds to one static load case. Moreover, 

it is proven in Section 2.2 that the locus of probable values of the combination coefficients ( )tα  is the 

α-ellipsoid defined by Eqn. 2.9b. As an equality, for n modes, the α-ellipsoid belongs to the space of 
dimension 3n. Its polyhedral envelope would have nn 323 ×  points. This number is too large for 
practical calculations, especially for multi-modal structures, whose number n of significant modes can 
be very important. Actually, instead of finding all the points α  approximating the α-ellipsoid, a 
preliminary selection of the most important ones (according to some engineering criteria) could be 
performed. For instance, it is possible to look for the 6 points α  belonging to the α-ellipsoid and 
maximizing the total shear seismic forces ( ) ( ) ( )tFtFtF zyx ,,  and moments ( ) ( ) ( )tMtMtM zzyyxx ,,  at the 

base of the building (or at another given level of the structure). However, these six cases do not 
account for coupling effects between these six generalized forces. Actually, a complete description of 
probable seismic forces at the base of the building is provided by the corresponding 6D hyper-

ellipsoid (named here T-ellipsoid): each point [ ]Tzzyyxxzyx MMMFFFT ,,,,,=  of this T-ellipsoid 

represents one probable combination of the total forces and moments at the base. Hence, it is proposed 
to look for the points α  fulfilling Eqn. 2.9b and such that the corresponding vector of total forces and 
moments at the base belongs to T-ellipsoid. In practice, the T-ellipsoid can be approximated by a 6D-
polyhedron with 384 vertices and the number of α  points to compute is 384. This is made by the 
analytical procedure proposed hereafter. First, observe that a point T  of the T-ellipsoid can be written 

as a function of α : 
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For instance, the components of [ ]Txznxzxzxynxyxyxxnxxxxx cccccccccc ,,,,2,,1,,,,2,,1,,,,2,,1 ,...,,,,...,,,,...,,= , 



which has dimension 3n, are equal to ∑=
l

l
xkixki Pc ,,,,

. The proof is straightforward and is omitted for 

brevity. This means that xkic ,,  is the total horizontal force (for all the nodes, indicated by the index l) in 

the x direction, for the mode i and due to an earthquake in the direction k. 
 
Let us consider now one of the 384 known vertices of the polyhedron enveloping the T-ellipsoid. We 
name this vertex [ ]Tzzyyxxzyx aaaaaaA ,,,,,= . Then, it is possible to prove that the point 

[ ]Tzzyyxxzyx
T bbbbbbAXAAB ,,,,,1 == −  lies on the surface of the T-ellipsoid. Moreover, B  is the 

intersection between the T-ellipsoid and the segment linking the origin and the point A . As a 
consequence, the problem that we have to solve can be written as follows: 
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This means that α  must be a point of the α-ellipsoid (of dimension 3n) and ( )αT  must be a point of 

the 6D hyper-ellipsoid of the total forces and moments (T-ellipsoid). The solution α  of the problem 
(2.14) is also the solution of the following optimization problem: 
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According to the Lagrange multiplier method, Eqn. 2.15 is equivalent to: 
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The vector  Aα  corresponding to the point A  on the polyhedron reads: 
 

AXAT
A

1−= αα                                (2.17) 
 

Each vector Aα  can be introduced into Eqn. 2.12 in order to define a static load field to be applied to 

structural nodes. Actually, there are 384 points A , thus 384 vectors Aα  and 384 static load cases. All 
these load cases reproduce some probable combinations of the three total seismic forces and moments 
at the building basis. 
 
5. APPLICATION 
 
In this part, seismic effects to a building in reinforced concrete will be studied using the following four 
approaches: 

1. Complete Quadratic Combinations of the modal responses in one direction and Quadratic 
Combination of three directions (CQC-Quadratic Combination), 
2. Complete Quadratic Combinations of the modal responses in one direction and Newmark’s 
Combinations of three directions (CQC-Newmark’s Combinations), 
3. Hyper-ellipsoid envelope of simultaneous shell (or beam) efforts in each element of the model, 
i.e. [ ]Tkxykyykxxkxykyykxxk MMMNNNx ,,,,,, ,,,,,=  according to the notation of Sect. 2.3, where 

(
xyyyxx NNN ,, ) are membrane efforts and ),,( xyyyxx MMM  are bending moments, 



4. Static load cases using modal linear combinations and considering 384 probable combinations 
of three total forces and three total moments at the base of the structure (see Section 4). 
 

Observe that in the 1st and 2nd procedures, the simultaneity of the generalized forces is an 
approximated way. The 3rd procedure properly takes into accounts simultaneity of generalized forces 
of each element of the structure. The 4th procedure is expected to consider a large number of probable 
states of the structure affecting the reinforcement demand. A comparison of these four approaches in 
terms of total amount of reinforcement demand will be carried out. 
 
5.1. Structure description and modal analysis 

 
Let us consider a reinforced concrete building with the following dimensions: width 16.5m, length 
27.5m, height 31.94m (Fig. 1a). The finite element software used for the structural analysis is 
HERCULE. The number of nodes and (shell or beam) elements is 14400 and 16900, respectively. The 
soil under the foundation raft is modeled by a set of vertical and horizontal linear elastic springs. After 
the modal analysis (Table 2), 35 modes plus the pseudo-mode are retained (n=36). A spectrum 
analysis is then carried out using the spectrum of Fig. 1b. For the earthquake in vertical direction, the 
spectrum ordinate is reduced by a factor equal to 2/3. The load cases used in this example include the 
permanent load (G) and the seismic load due to earthquakes in directions x, y and z. 
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Figure 1. (a) Finite element model. (b) Pseudo-acceleration spectrum in horizontal directions (acceleration 
(m/s2) vs. frequency (Hz)) 

 
Table 2. Important retained modes 

Frequency Period Percentage of effective mass 

(Hz) (s) (%) N° mode 

  

Damping 
coefficient 

(%) X Y Z 

1 4.41 0.2268 6.6 55.9 0.4 0 

2 6.18 0.1618 6.7 0.2 59.7 0 

3 9.35 0.107 6.9 1.6 0.3 0.3 

4 11.39 0.0878 7.2 19.1 0.2 2.9 

5 13.56 0.0738 9.2 1.1 0.2 35.1 

6 16.14 0.062 7.4 0.5 17.1 1.4 

7 16.54 0.0605 10.2 0.1 1.8 34.1 

… … … … … … … 

35 39.18 0.0255 7.1 0.2 0.3 1.5 

Total of considered modes 82.4 84.4 82.7 

 
5.2. Comparison of four approaches of seismic effort calculation  
 
Once the efforts are known for each element of the model, the reinforcement can be determined. Table 
3 gives the ratios between the total reinforcement found by the four approaches, considering the 



“CQC-Newmark’s Combinations” as reference method. One can observe that the result obtained using 
the hyper-ellipsoid is very close to the reference one. The reinforcement amount obtained by the static 
load cases (T-ellipsoid, Section 4) is more important. The difference between this approach and the 
hyper-ellipsoid envelope (third case in Table 3) can be explained by the fact that the 6-dimension T-
ellipsoid is discretized by a polyhedral envelope which is larger than the original T-ellipsoid. As 
expected, the “CQC-Quadratic Combination” gives the maximum reinforcement demand.  
 
Table 3. Comparison of the four methods of seismic effort calculation in terms of reinforcement quantity 

 
CQC – Newmark 

combinations 
CQC – quadratic  

combination 
Hyper-ellipsoid 

envelope 
Equivalent static 

load case 
Total reinforcement 

ratio 
1 1.50 0.99 1.14 

 
Hereinafter, the difference between the four approaches will be illustrated by plotting the points 
representing the combinations of the six efforts

xyyyxx NNN ,, ,
xyyyxx MMM ,,  in two shell elements of the 

structure. A 6D space should be considered. For the finite elements indicated in Fig. 2, the projections 
of these efforts in the planes 

yyxx NN ,  and 
yyxx MN ,  are shown in Figs. 3 and 4. 
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Figure 2. Elements considered 
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Figure 3. Distribution of forces – element 6692 

 
Figs. 3 and 4 show that (i) there are points obtained by the “equivalent static load” procedure of 
Section 4 which “envelope” both the points of the hyper-ellipsoid envelope of shell efforts and the 
CQC-Newmark’s points. That explains why the reinforcement demand found by the equivalent static 
load approach is more important than ones found by the approaches 2 and 3; (ii) the reinforcement 
quantity obtained by the “CQC-Quadratic Combinations” is the most important. The efforts are 
strongly overestimated especially when an important correlation between shell efforts exists; (iii) it is 
possible to reduce the reinforcement demand found by the equivalent static load approach by a 
different definition of the 6-dimension T-ellipsoid envelope. Work is in progress on this subject. 
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Figure 4. Distribution of forces – element 10337 

            
 
6. CONCLUSION 
 
In the first part of the paper, a novel interpretation of the so-called (elliptical) peak response envelopes 
(Menun and Der Kiureghian, 2000a) has been developed, using the notion of “envelope of the 
coefficients of the linear combination of modal peaks” (Martin, 2004). Moreover, the properties of an 
algorithm for the discretization of a peak response envelope with a generic dimension have been 
discussed. Finally, using the peak response envelope approach, a procedure has been proposed to 
define several static load cases equivalent to the seismic action. In the second part of the paper, the 
reinforcement demand for a reinforced concrete building is computed using four different procedures 
based on the modal spectrum method. The first two approaches, the “CQC-Quadratic Combination” 
and the “CQC-Newmark’s Combinations”, are classical methods of combining the peak modal 
responses coming from the response spectrum method. The third procedure is the peak response 
envelope method (Menun and Der Kiureghian, 2000a) applied on the membrane and bending efforts 
of each shell element of the finite element model. The last procedure is based on the equivalent static 
load fields defined according the new method proposed in the paper. As expected, the approach called 
“CQC-Quadratic Combination” gives the largest reinforcement demand. For the example considered 
here, the classical “CQC-Newmark’s Combinations” and the peak response envelope method give 
almost the same total reinforcement demand. The equivalent static load fields procedure leads to a 
reinforcement demand higher than the “CQC-Newmark’s Combinations”. Work is in progress to 
improve the definition of the discretization algorithm used to approximate the hyper-ellipsoids.  
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