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SUMMARY 

Structural engineering evaluation and strengthening of a tall building with a Peer Review panel can now be done 

with the benefit of results from structural analysis computer models and structural reliability methods that benefit 

the profession and the owners. This paper shows that the time for transparency is now for tall buildings and the 

building code committee decisions that are good for low rise building are not acceptable for tall buildings. The 

inclusion of professional experience, Bayesian methods, is also essential in tall building evaluation and 

strengthening. 
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1. INTRODUCTION 

 

This paper describes the work performed by the author as part of the Los Angeles Tall Building 

Structural Design Council committee developing a procedure for the Evaluation and Strengthening of 

Tall Buildings in the Los Angeles region. The work is based upon the mathematics of Structural 

Reliability Theory and scientifically incorporates the professional experience of the structural engineer 

of record and the project peer review committee using Bayesian methods. My goal which has been 

accepted by the committee was to present a procedure for evaluating an existing tall building for future 

earthquakes based on my over forty years of work in the area of structural reliability. The procedure 

incorporates the past work of many others but is customized to be focused and most appropriate for 

tall buildings. Bayesian decision theory is an important part of the work because it enables the “art” of 

structural engineering to be incorporated in the evaluation and strengthening. This recognition of 

incorporating this art is even more important today than it was over 50 years ago as stated then by 

Blume, Newmark and Corning in their classic 1961 book entitled “Design of Multistory Reinforced 

Concrete Buildings for Earthquake Motions”: 

 
“Considerable knowledge has been gained in the last three decades about the phenomenon of ground 

motions, the characteristics of structures, and their behavior in earthquakes. Despite this progress the 

complexities are still so great that earthquake-resistant design is not yet capable of complete and 

rigorous execution solely by means of mathematical analysis, design codes or rules. It is an art as well 

as a science, and requires experience and judgment on the part of the engineer.” 

 

The presented procedure addresses the following important parts of the evaluation: What to do with 

and benefit from limited field test data; modeling of structural members that do not have the database 

of information that code design is currently built upon; the roles of both linear and nonlinear time 

history analyses; and bounding of uncertainty factors for limit states. In a very basic sense this work 

can rationally be viewed as an extension of the work in many excellent textbooks on structural 

reliability, the classic Applied Technology Council Report ATC-3, the foundation of the ASCE 7-10 

load and resistance factors, the material in ASCE 41-06 Supplement #1, PEER / ATC 63, and PEER / 

ATC 72-1. 



 

Persons unfamiliar with structural engineering of buildings, and sometimes recently graduated 

engineers, often do not appreciate the complexity of the role of the structural engineer and the 

requirement for continuous learning. It is the objective of this paper to show how Structural Reliability 

Theory provides a vehicle for the continued incorporation into structural engineering learning from 

analysis, testing and observing damaged buildings to rapidly incorporate a more rational treatment of 

loading (Demand) and strength (Capacity) uncertainties. By such incorporation, it becomes possible to 

discuss more rationally and with transparency the safety of buildings. 

 

Good structural engineers realize that there are always options in evaluating and strengthening a 

building. These options relate to the analysis in for example selecting the computer program to be used 

for the analysis. Structural reliability as presented in this book recognizes this and also offers the 

structural engineer options that all can be applied to meet or exceed the safety levels for performance 

that existing new building codes require and also as it relates to serviceability limit states the goals that 

the client requests be satisfied. This paper presents one option. 

 

A word on the Structural Reliability analysis option called Monte Carlo Simulation. This is clearly the 

choice that becomes more “user friendly” each year. It requires minimal mathematics because it just 

repeats a deterministic structural analysis many times where each time a new set of computer input 

values are used. Structural engineers already perform a Monte Carlo Simulation when they use the Los 

Angeles Tall Buildings Structural Design Council new building design procedure adopted by the City 

of Los Angeles. This procedure requires the geotechnical engineer to provide a minimum of seven 

earthquake ground motion time histories for the Ultimate (or Collapse) Limit State. Each time history 

represents one sample in a Monte Carlo Simulation. All seven time histories are used and seven runs 

of the computer program are completed. In the LATBSDC case, the Expected Value of the seven 

Monte Carlo Simulations is used to evaluate the Ultimate Limit State. The Monte Carlo approach is 

especially attractive nonlinear time history structural analyses. 

 

It is the structural engineer’s choice of approach, but it is essential for tall buildings that the structural 

analyses models and structural reliability analyses be reviewed and approved by a Project Peer Review 

team. 

 

 

2. STRUCTURAL SYSTEM AND STRUCTURAL MEMBER SECTION LIMIT STATES 

 

As structural engineers, we are educated to evaluate structural members and structural systems to 

quantify, in scientific terms, performance. We use structural analysis mathematics to quantify this 

performance. We evaluate alternative structural designs prior to selecting the best structure for a 

building. We also evaluate the structural design of a building developed by other structural engineers. 

This we call Peer Review. We also evaluate the performance of an existing, or As-Built, building to 

determine if it needs to be strengthened. And if the building needs to be strengthened to meet a defined 

performance objective, then we evaluate alternative structural options for doing this strengthening. 

Therefore, structural engineering evaluation through structural analysis is at the core of our profession. 

The Structural Evaluation of a building requires a definition of what we are going to evaluate. The 

area of structural engineering called Structural Reliability provides a scientific basis for evaluation. In 

Structural Reliability, we use Limit States that define the performance of the structural system and its 

structural members as thresholds of system / member behavior under specified load hazard levels. We 

use two basic types of limit states and they are called Structural System Limit States and Structural 

Member Section Limit States.  

 

An example of a Structural System Limit State is when the displacement of the top floor, or roof, 

reaches and exceeds the level at which the building structural system will fail and the building will 

collapse. This is called an Ultimate Limit State and is referred to as “Ultimate Limit State: Collapse of 

Structure”. Another example of a Structural System Limit Sate is when building occupants start 



feeling the building move in high winds. We call this a Serviceability Limit State and it is referred to 

as “Serviceability Limit State: Human Perception”. 

 

The building also has what we call in our Structural Reliability language Structural Member Section 

Limit States. For example, a Structural Member Section Limit State is when the internal member 

forces / deformations reach and exceed the level at which cracking of the concrete occurs with a 

corresponding significant loss of stiffness of the structural member. This is called “Structural Damage 

Limit State: Cracking of Concrete”. Another Structural Member Section Limit State occurs when the 

strain in a steel reinforcing bar is so large that the bar will yield and when the load is removed the steel 

bar will not return to its undeformed condition. This is called the “Structural Damage Limit State: First 

Yield of Reinforcing Steel”. 

 

 

3. QUANTIFICATION OF UNCERTAINTY 

Uncertainty is typically quantified by structural engineers using the Structural Reliability term called 

Coefficient of Variation. Table 3.1 provides acceptable values for the Coefficient of Variation of 

several structural engineering variables. A larger value of the Coefficient of Variation corresponds to 

more uncertainty. 

Table 3.1 Coefficient of Variation (%) 
Rolled Steel Yield Stress 8 

Grade 50 Steel Tension Member 9 

Reinforcing Bars (Grade 60) Yield Stress 9 

Concrete Control Cylinders Compressive Strength 

(Excellent) 

10 

Concrete Control Cylinders Compressive Strength 

(Average) 

15 

Concrete Control Cylinders Compressive Strength 

(Poor)  

20 

Damping in Concrete Building 30 

Concrete Modulus of Elasticity  20 

Concrete Poisson Ratio 10 

Steel Modulus of Elasticity 6 

Damping in Steel Frame Building 20 

Live Load 25 

Maximum Annual Wind Speed 16 

Maximum 50-Year Wind Speed 12 

Demand and Capacity Prediction from Structural 

Element Analysis Models that have been calibrated / 

verified with a large amount of test data (High 

Confidence) 

20 

Demand and Capacity Prediction from Structural 

Element Analysis Models that have been calibrated / 

verified with limited test data (Limited Confidence) 

30 

Demand and Capacity Prediction from Structural 

Element Analysis Models that have been calibrated / 

verified with very little test data (Little Confidence) 

40 

ATC 63 Quality Rating Superior Confidence 10 

ATC 63 Quality Rating Good Confidence 20 

ATC 63 Quality Rating Fair Confidence 35 

ATC 63 Quality Rating Poor Confidence 50 

 



 

4. COMMUNICATING WITH THE OTHER WORLD 

 

As structural engineers who have knowledge of Structural Reliability theory, we need to answer this 

question in a meaningful way to decision makers who are typically not structural engineers (i.e. 

communicating with the non-structural engineering world). To bridge this potential communication 

gap, we use the confidence scale given in Table 4.1 which is based on the American Society of Civil 

Engineers publication called Degrees of Belief. The term Very Certain is used in place of Almost 

Certain and are the same. 

 
Table 4.1 Confidence Scale 

Confidence Probability Single Number Probability 

Almost Certain 90 to 99.5% sure 90% 

Very Likely or Very Probable 75 to 90% sure 80% 

Likely or Probable 60 to 75% sure 70% 

Medium Chance 40 to 60% sure 50% 

 

It is also often very important in our communication with others to present the concept of Exposure 

Time. In ASCE/SEI 7-10 this is called a Service Life. This is especially important when we discuss 

with the decision maker or even among ourselves what limit states to consider and how to evaluate the 

consequences of failure.  

 

To illustrate this note in earthquake engineering, there are two levels of earthquake that have more 

common usage than others. They are the Maximum Considered Earthquake which corresponds to an 

earthquake that has a 2% probability of being exceeded in 50 years. A second and more frequent 

earthquake is one with a 50% probability of not being exceeded in 30 years. This is often called a 

Serviceability (or Frequent) Earthquake. Table 4.2 illustrates the relationship between Exposure Time 

and Probability of Exceedence. 

 
Table 4.2 Return Period (in years) for Given Exposure Time and Probability of Exceedance 

 Probability of Exceedance 

Exposure Time 

(years) 

2% 10% 

(Almost Certain) 

20% 

(Very Likely) 

50% 

2 99 19 9 3 

5 247 47 22 7 

10 495 95 45 14 

20 990 190 90 29 

30 1485 285 134 43 

50 2475 475 224 72 

100 4,950 949 448 144 

 

 

5. THE ASCE 7-10 VIEW OF THE WORLD 

 

Don’t panic! What is done here in this section is to just quote the text in parts of the ASCE 7-10 

structural engineering document as it specifically relates to the evaluation and strengthening of 

existing buildings. The quotations are in italics, and my text is not italicized. 

 

DESIGN STRENGTH: The product of the nominal strength and a resistance factor. 

 

LIMIT STATE: A condition beyond which a structure or member becomes unfit for service and is 

judged either to be no longer useful for its intended function (serviceability limit state) or to be unsafe 

(strength limit state). 

 



LOAD FACTOR: A factor that accounts for deviations of the actual load from the nominal load, for 

uncertainties in the analysis that transforms the load into a load effect, and for the probability that 

more than one extreme load will occur simultaneously. 

 

My Note: The above recognizes uncertainty as an essential factor that we must account for in 

evaluation and design. 

 

Assumptions of stiffness, strength, damping, and other properties of components and connections 

incorporated in the analysis shall be based on approved test data or referenced Standards. 

 

Testing used to substantiate the performance capability of structural and nonstructural components 

and their connections under load shall accurately represent the materials, configuration, construction, 

loading intensity, and boundary conditions anticipated in the structure. Evaluation of test results shall 

be made on the basis of the values obtained from not less than 3 tests, provided that the deviation of 

any value obtained from any single test does not vary from the average value for all tests by more than 

15%. If such deviation from the average value for any test exceeds 15%, then additional tests shall be 

performed until the deviation of any test from the average value does not exceed 15% or a minimum of 

6 tests have been performed.  

 

My Note: The above shows that we need tests that are for structural members similar to what we see in 

the existing structure. Otherwise we must perform laboratory structural member tests. 

 

 

6. DEMAND AND CAPACITY FOR LIMIT STATE 
 

Building codes and standards for many years use the following equation 

 

D C   (6.1) 

 

This is the form of the Load and Resistance Factor Design equation expressed in terms of the Mean 

Demand ( D ) and Mean Capacity ( C ).  Note that it is the Mean Capacity that is multiplied by a 

Capacity Reduction Factor ( ) and the Mean Demand that is multiplied by a load factor ( ). 

 

It is useful to define 

 

Design Demand = D  (6.2) 

Design Capacity = C  (6.3) 

 

It can be shown that  

 
0.72 De    (6.4) 
0.72 Ce

 
  (6.5) 

 

where 

 

  = Reliability, or Safety, Index 

D  = Coefficient of Variation in Demand 

C  = Coefficient of Variation in Capacity 

 

The Design Capacity must be greater than or equal to the Design Demand.  

 



Now consider the following 

 

D = Expected Value of Demand using a specified exposure time (e.g. 50 years) 

 

and define the Demand from the MCE earthquake to be 

 

MCED = Demand from MCE 

 

where 

 

 /MCED D   (6.6) 

 

Note that   is greater than one, since the MCE is greater than the Expected Value Earthquake 

demand in a 50 year exposure time. 

 

Now equate Design Demand and Design Capacity from Eqns. 6.2 and 6.3 to obtain 

 

Design Demand = Design Capacity

D C 
 (6.7) 

 

The MCE Design Demand is now expressed as 

 

MCE Design Demand MCED D   (6.8) 

 

Therefore, substituting Eqn. 6.8 into Eqn. 6.2, we obtain 

 

 /MCED D    (6.9) 

 

Eqn. 6.7 now becomes  

 

 /MCED C    (6.10) 

 

So it follows that 

 

 /MCED C   (6.11) 

 

Now define the MCE Capacity Reduction Factor ( MCE ) to be 

 

 /MCE    (6.12) 

 

Substituting Eqn. 6.12 into Eqn. 6.11, we obtain 

 

MCE MCED C  (6.13) 

 

Combining Eqns. 6.4, 6.5 and 6.12, we obtain 

 

   

 

exp 0.75 / exp 0.75

exp 0.75

MCE C D

C D

   

   

   

    

 (6.14) 



 

Eqn. 6.14 incorporates the ratio   of the demand from the MCE ( MCED ) to the Expected Value of the 

Demand ( D ). It also incorporates the uncertainty in the demand and capacity by the inclusion of the 

Coefficients of Variation of the Demand ( D ) and Capacity ( C ). 

 

Now consider the situation where the structural engineer prescribes an earthquake other than the MCE 

and wishes to perform a reliability-based design. Similar to the above, it follows that  

 

PLD = Demand from Prescribed Load 

 

 /PLD D   (6.15) 

 

D C   (6.16) 

 

 /PLD C   (6.17) 

 

Define the Prescribed Load Capacity Reduction Factor to be 

 

 /PL    (6.18) 

 

Therefore, the Prescribed Design Load Demand and Design Capacity Equation for the limit state can 

be expressed as 

 

Design Demand = Design Capacity 

 

PL PLD C  (6.19) 

 

where 

 

   

 

exp 0.75 / exp 0.75

exp 0.75

PL C D

C D

   

   

   

    

 (6.20) 

 

The above incorporates the ratio   of the demand from the prescribed load, PLD , (e.g. MCE) to the 

Expected Value of the Demand ( D ). It also incorporates the uncertainty in the demand and capacity 

by the inclusion of the Coefficients of Variation of the Demand ( D ) and Capacity ( C ). 

 

What is beautiful about this formulation is that it helps in communicating with our clients and also lets 

us update the Design Capacity and Demand at different stages (i.e. money spending levels) as a project 

evolves. For example, knowledgeable structural / earthquake engineers can estimate if they wish a 

“first cut” estimate of each term in Eqns. 6.19 and 6.20 in a few hours. Also, the value of the 

Reliability Index (  ) can be selected for many structural member types or conditions in the existing 

building depending on the consequences of failure. 

 

 

7. CONCLUSIONS 

 

The structural engineer performing evaluation and strengthening can define the limit states and for 

each select a load that is desired to address (e.g. MCE) then using experience, test data and structural 



model analyses, calculate PLD , C , C , D  and PL . Then based on the consequences of failure 

select  . The Design Demand, PLD , and Design Capacity, PLC , then follow. 
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