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SUMMARY: 

Hybrid simulation combines numerical simulation and experimental testing in a loop of action and reaction to 

capture the dynamic behavior of a structure. When the rate-dependent behavior of the experimental component is 

significant, the hybrid simulation must be conducted in real-time (i.e., real-time hybrid simulation or RTHS). In 

RTHS, the actuator dynamics are directly introduced into the RTHS loop. Also, the phenomenon of control-

structure interaction leads to a coupling of the behavior of the actuators and specimen. Traditional actuator 

control approaches compensate for an apparent time delay or time lag rather than address the actuator dynamics 

directly. Moreover, most actuator control approaches focus on single-actuator systems. The control approach 

proposed herein directly addresses actuator dynamics through model-based feedforward-feedback control. The 

modeling captures the dynamic coupling between the actuators, ensuring accurate control for multi-actuator 

systems. The proposed approach is illustrated for the RTHS of a three-story building with multiple actuators. 
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1. INTRODUCTION 

 

Real-time hybrid simulation (RTHS) requires accurate tracking of desired displacements using servo-

hydraulic actuators. Close examination of the servo-hydraulic system response shows that 
experimental equipment introduces both time delays and frequency-dependent time lags into the 

RTHS loop. Time delays and lags are an intrinsic part of experimental testing, and mitigation of their 

effects is an essential part of RTHS. In addition, coupling of the dynamics between the actuator and 
specimen was observed and explained by Dyke et al. (1995) and identified as the phenomenon of 

control-structure interaction (CSI). Prior to this study, researchers have neglected actuator dynamics 

and CSI in experimental testing. This oversight was acceptable for slow-speed tests including 
conventional hybrid simulation, but unacceptable for the emerging framework of RTHS. 

 

CSI has been well studied for single-actuator systems, and RTHS actuator control approaches 

considering specimen dependency through CSI have been proposed (Carrion and Spencer, 2007; 

Phillips and Spencer, 2011). However, as RTHS is being used for more complex tests, control of 

multiple actuators will be required. For multi-actuator systems, CSI leads to a complex actuator 

control challenge. Because the dynamics of a single actuator are coupled to a specimen, when multiple 

actuators are connected to the same specimen, the dynamics of all of the actuators become coupled to 

each other through the specimen. 

 

A model-based approach to multi-actuator control is proposed in this paper. Both the dynamic 

behavior of the actuators and the dynamic coupling between actuators are considered, assuring 

accurate control in the presence of CSI. The efficacy of the proposed approach is illustrated through 

numerical simulation of a three-story steel building with multiple actuators used to control the 

structure in RTHS.  

 



1.1. Problem Formulation 

 

In hybrid simulation, the equations of motion governing the dynamic response of a structure can be 

separated into numerical and experimental components as indicated by superscripts “N” and “E”, 
respectively: 
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where M  is the mass matrix, C  is the damping matrix, K  is stiffness matrix, Γ  is the mass influence 

matrix, 
g

x&&  is the ground acceleration, x  is the displacement vector relative to the ground, and dots 

represent differentiation with respect to time. The restoring force of the experimental component is 

lumped into the vector ER , which contains static, damping, and inertial forces. A linear system is 

presented for clarity, although the formulation can be adapted to include nonlinear systems.  
 

The loop of action and reaction between numerical and experimental components during RTHS is 

illustrated in Fig. 1.1. From numerical integration of Eqn. 1.1, the structure is excited and 

displacements x  are calculated. To achieve compatibility between numerical and experimental 

components, the subset of x  corresponding to the interface DOFs Ix  are commanded to the 

experimental component using servo-hydraulic actuators. Inner-loop feedback control (through the 

servo-controller) provides nominal tracking of the command vector u  as measured by Ex , the vector 

of interface degrees-of-freedom (DOFs) physically realized by the experimental component. Outer-

loop actuator control is typically added to determine u  such that Ex  tracks Ix  very accurately and in 

real-time. The restoring forces of the specimen, as measured by the actuator load cells or external load 

cells, are returned to the numerical integration scheme as ER . The natural velocity feedback captures 

the specimen dependency of the servo-hydraulic system through CSI (Dyke et al., 1995). 
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Figure 1.1. Multiple feedback loops in RTHS 

 

In model-based control, the outer-loop controller is created to cancel out the dynamics of the servo-

hydraulic system. Consider the input-output transfer function model ( )sxuG  of the linearized servo-

hydraulic system, including the actuator, servo-valve, servo-controller, and specimen (experimental 

component) as represented in Fig. 1.2 and based on Dyke et al. (1995).  
 

The dynamics of the servo-controller and servo-valve, actuator, and specimen have been condensed 

into transfer functions ( )ssG , ( )saG , and ( )sxfG , respectively. The matrix A  represents the 

effective cross-sectional area of the actuator piston. The input-output transfer function, applicable to 

both single-input single-output (SISO) and multi-input multi-output (MIMO) systems, is written as: 
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Figure 1.2. Servo-hydraulic system with CSI 

 

1.2. Illustration of Actuator Coupling 
 

When multiple actuators are connected to the same specimen, the dynamics of the actuators become 

coupled through the specimen (i.e., when an actuator applies a force to the structure, the other 

actuators will also experience this force). This section demonstrates such coupling using the three-

degree-of-freedom (3DOF) linear building structure shown in Fig. 1.3. 
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Figure 1.3. Example 3DOF linear structure 

 

The structure employs three servo-hydraulic systems, each comprised of a servo-valve, a servo-

controller, and an actuator and can be represented in Fig. 1.2 by the following diagonal matrices: 
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The servo-controller and servo-valve dynamics are chosen as a constant gain, the actuator dynamics 

are chosen as a first-order model, and the effective cross-sectional area is a constant. Such a selection 

is consistent with the models presented in Dyke et al. (1995) for single-actuator systems. The 

commanded displacements, measured forces, and measured displacements of Fig 1.2 are written as 
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For generality, the mass, damping, and stiffness matrices of the structure are assumed fully populated. 

The transfer function relating the input force from the actuators to the output displacement is given by:  
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where m, c, and k represent entries in the mass, damping, and stiffness matrices, respectively, with 
their position indicated by the subscripts. The off-diagonal terms in Eqn. 1.4 are the source of the 

interaction between the three servo-hydraulic systems. Substituting Eqns. 1.3 and 1.4 into 1.2, the 

MIMO servo-hydraulic system transfer function model is obtained: 
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where z and p represent the model zeros and poles, respectively. The poles and zeros can be obtained 

in closed-form, although they are too complicated for concise presentation. In Eqn. 1.5, the off-

diagonal terms describe the interaction between the three servo-hydraulic systems. 

 
 

2. MODEL-BASED CONTROL OF MIMO SYSTEM 

 
The model-based control approach proposed herein is based on a linearized model of the servo-

hydraulic system, as in Eqn. 1.2, which is represented in state space form to facilitate modern control 

theory design (Phillips and Spencer, 2011): 

 

BuAzz +=&  (2.1) 

 

Czx =E  (2.2) 

 

where z  is the state vector and A, B, and C are the system, input, and output matrices, respectively. 

The tracking error between the desired and measured displacement (or I
x  and E

x , respectively) is 

defined as EI
xxe −= . The command u  to the actuator should be chosen such that the tracking error 

is minimized. If perfect tracking is achieved, an ideal state z  and an ideal input u  leading to an 

output E
x  must exist such that IE

xx = . The ideal system is described as: 
 

uBzAz +=&  (2.3) 
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Deviations of the state, control, and output from this ideal system with respect to the original system 

are defined as zzz −=~ , uuu −=~ , and EEE~ xxx −= . The dynamics of the deviation system are then: 

 

uBzAz ~~~ +=&  (2.5) 

 

 
ezCx −== ~~ E  (2.6) 

 

The tracking problem has now been redefined as a regulator problem about a setpoint (Lewis and 

Syrmos, 1995). The control law uuu −=~  can be rewritten in terms of the original system command 

u , which consists of a feedforward component FFuu =  determined from the ideal system and a 

feedback component 
FB

~ uu =  determined from the deviation system. 



The model-based controller, incorporating both feedforward and feedback links, is represented 
schematically in Fig. 2.1. The servo-hydraulic system of Fig. 1.2 has been condensed to show the 

details of the model-based controller, which acts as an outer-loop controller around the system. 
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Figure 2.1. Model-based actuator control with feedforward and feedback links 

 

2.1. Feedforward Control 

 

The feedforward controller is designed to cancel the modeled dynamics of the servo-hydraulic system. 

The inverse of the servo-hydraulic system model will serve as the feedforward controller: 
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Substituting Eqns. 1.3 and 1.4 into 2.7 yields: 
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Equation 2.8 is relatively simple compared to Eqn. 1.5. For each input-output pair, there are two zeros 

that appear as a result of the second-order specimen dynamics. If the mass, damping, or stiffness 

matrices are not fully populated, as in a lumped mass system or a shear building, then Eqn. 2.8 could 

be further simplified. Thus, an understanding of the behavior of the physical specimen can aid in 

determining the number of zeros (and poles) to use in the feedforward controller. A third zero in each 

input-output pair arises from the first-order actuator model.  
 

The feedforward controller of Eqn 2.8 is improper. The proposed approach for accommodating the 

improper transfer function is to make use of higher order derivatives which are available from 

numerical integration during RTHS. Methods for accurately estimating the higher-order derivatives 

during RTHS are discussed in Phillips and Spencer (2011). 

 

2.2. Feedback Control 

 

In the presence of changing specimen conditions, modeling errors, nonlinearities, and disturbances, 

feedback control can be applied to reduce further the tracking error by bringing the deviation states of 

Eqn. 2.5 to zero. Evoking the separation principal, an LQG controller can be designed from 

independent LQR (optimal state feedback control) and Kalman filter (optimal observer) designs. To 



improve the LQG controller’s performance and robustness in the frequency range of interest, a 

shaping filter can be added to the process noise as in Phillips and Spencer (2011). 

 

Model-based feedback control is derived from a state space representation of the transfer function 

given in Eqn. 1.2. By examining the dynamics of Fig. 1.2, the following state space realization can be 

create directly: 
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As expected, the state space model contains nine poles. In a practical situation where the specimen 

dynamics must be obtained from system identification, identifying the inverse first and then 

calculating the servo-hydraulic system transfer function model from this inverse may be preferred. 

Such an approach is discussed and applied for the following example. 

 

The preceding model-based multi-actuator control scheme was presented for a three-actuator system. 

The same approach can be applied to an arbitrary number of actuators. Likewise, the approach can be 

easily adapted to higher-order servo-hydraulic system models as needed. 

 

 

3. RTHS OF A NONLINEAR MDOF STRUCTURE 

 

To demonstrate the performance of the proposed model-based multi-actuator control strategy, a semi-

actively controlled multi-degree-of-freedom (MDOF) building is considered. For simplicity, all DOF 

are selected as interface DOF (having both numerical and experimental components). The 

experimental component is selected as the small-scale three-story building model from multiple 

studies on active and semi-active control (Dyke et al., 1995; Dyke et al., 1996). The natural 

frequencies are 5.46, 15.8, and 23.6 Hz, with damping ratios of 0.31, 0.62, and 0.63%. A numerical 

component is added with a mass matrix equal to 9 times the mass matrix of the experimental 

component, bringing the natural frequencies of the total structure (combining numerical and 

experimental components) to 1.73, 5.00, and 7.48 Hz. Rayleigh damping is added to the total structure 

to create damping ratios of 1.00, 1.00, and 1.57%. The additional damping required to achieve these 

damping ratios is added numerically. Finally, a small-scale MR damper is added between the ground 

and first story of the structure. This MR damper is considered part of the experimental component and 

modeled using the phenomenological model and parameters proposed by Spencer et al. (1997). The 

MR damper has a maximum force of approximately 1.5 kN, which is about 5% of the seismic mass of 

the total structure. The numerical and experimental components are illustrated in Fig. 3.1. Servo-

hydraulic actuators are connected to each of the three floors of the experimental structure to enforce 

compatibility with the numerical component and provide restoring force feedback from the load cells. 

The servo-hydraulic system parameters for all three actuators are based on the small-scale actuator 

model of Dyke et al. (1995). 

 

The experimental component is assumed to be equipped with sensors measuring the actuator 

displacements, the restoring forces, the absolute story accelerations, the MR damper displacement, and 

the MR damper restoring force with simulated measurement noise. The absolute story accelerations, 

the MR damper displacement, and the MR damper force are available to a semi-active controller for 

use in determining the input current to the MR damper. A semi-active controller is created based on a 

clipped-optimal control algorithm and controller weightings from Dyke et al. (1996). 
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Figure 3.1. Three-story nonlinear structure 

 

3.1. MIMO System Identification 

 

In the likely case that the parameters of the specimen and servo-hydraulic system are unknown, 

nonparametric system identification can be used to obtain the servo-hydraulic system transfer function 

model (Kim et al., 2005). As indicated previously, the model inverse has relatively few poles and 

zeros to fit. The simplicity of the inverse is the basis for the proposed system identification method for 

model-based multi-actuator control. 

 

Step 1: Determine the experimental MIMO transfer function. The first step is to conduct system 

identification on coupled actuator system attached to specimen. One actuator should excite the 

specimen with a band-limited white-noise (BLWN) and the response be measured at all actuators. The 

process should be repeated for each actuator; the MIMO transfer function will thus be built one input 

at a time. During each test, the unexcited actuators should either be held at zero displacement or given 

a very low-amplitude BLWN to overcome static friction forces which can add damping to the system 

(Chang, 2011).  

 

Step 2: MIMO transfer function inversion. At this step, the experimental MIMO transfer function 

should be inverted. The operation will be a matrix inversion at each frequency. 

 

Step 3: Fitting the inverse. Next, each input-output pair of the inverse MIMO transfer function should 

be fit with a transfer function model. The transfer function models can then be combined to create an 

inverse MIMO transfer function model, which can be used as the feedforward controller. Insight from 

Eqn. 2.8 can aid in the model fitting. 

 

Step 4: Creating the servo-hydraulic system transfer function model. The inverse of the inverse MIMO 

transfer function model will be equal to the servo-hydraulic system transfer function model. This 

model, in state space form, can be used for feedback control design. Note that when a MIMO transfer 

function model is converted into a state space model, it will not necessarily be a minimal realization. 

A minimal state space realization contains the minimal number of states necessary to represent the 

system dynamics. Such a realization is also necessarily both controllable and observable. Effort should 

be made to create a minimal realization; methods for creating minimal realizations are discussed in 

Chang (2011). Eqn. 2.9 demonstrates that a minimal realization is possible, whereby there are no 

duplicate or unnecessary states and all of the states are controllable through the actuators as well as 

observable using load cells and displacement transducers.  

 

System identification is illustrated in Figs. 3.2 and 3.3 for the experimental component of Fig. 3.1. 
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Figure 3.2. MIMO transfer function magnitude of the 3DOF experimental substructure 
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Figure 3.3. MIMO transfer function phase of the 3DOF experimental substructure 

 

Each actuator is excited one at a time using a 0 to 50 Hz BLWN for a total of three data sets. During 

this excitation, the other actuators are held at zero displacement. Also, the MR damper is randomly 

switched from 0.0 to 2.0 Amps (0 to 2.25 V) to simulate semi-active conditions during RTHS. The 

fitted feedforward model contains three zeros in each of the diagonals, one zero in each of the 

immediate off-diagonals, and no dynamics for the extreme off-diagonals. The resulting servo-

hydraulic system model contains six zeros and nine poles in the diagonals, four zeros and nine poles in 

each of the immediate off-diagonals, and two zeros and nine poles in the extreme off-diagonals. 

 

3.2. RTHS Study 

 

RTHS was used to evaluate the response of the three-story nonlinear structure employing semi-active 

control subjected to 0.5x the NS component of the 1940 El Centro earthquake. The simulation was run 

at 2000 Hz using the fourth-order Runge-Kutta scheme for numerical integration. Both the numerical 

and experimental components are simulated numerically using Matlab’s Simulink environment with 



the effects of actuator dynamics included (as in Fig. 1.1). Model-based control is developed using the 

transfer function models in Figs. 3.2 and 3.3 obtained using system identification on the simulated 

experimental component. Simulated measurement noise is included in all feedback loops (e.g., 

restoring force of experimental component, measured displacement for model-based feedback control, 

and input for the semi-active controller). This noise is not included in the sampled measurements used 

for post-processing, equivalent to perfect filtering. 

 

Six cases are considered to evaluate the structural response: (a) idealized simulation (i.e., no actuator 

dynamics, substructuring, or measurement noise), (b) RTHS with actuator dynamics and no 

compensation, (c) RTHS with actuator dynamics and model-based feedforward control which neglects 

actuator coupling, (d) RTHS with actuator dynamics and model-based feedforward control which 

considers actuator coupling, (e) RTHS with actuator dynamics and model-based feedforward-feedback 

control which neglects actuator coupling, and (f) RTHS with actuator dynamics and model-based 

feedforward-feedback control which considers actuator coupling.  

 

The simulation case (a) is considered the exact solution from which a comparison of RTHS cases (b) 

through (f) will be made. For case (b), the RTHS immediately went unstable, illustrating the need for 

actuator control in the presence of actuator dynamics. As a representative case, (f) is presented 

alongside case (a) in Fig. 3.4 for displacement and absolute acceleration of the first story, as well as 

MR damper hysteresis loops. Excellent correlation between the two cases is observed.  
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Figure 3.4. First story time histories and MR damper hysteresis 

 

Graphically distinguishing cases (c) through (f) is difficult. Therefore, RMS error norm will be used as 

a quantitative measure of actuator controller performance. Comparisons are made for cases (c) through 

(f) in Table 3.1 for both tracking error (RMS error norm between desired and measured displacements) 

and response error (RMS error norm between displacements/accelerations of RTHS compared to the 

exact solution). Tracking error illustrates how well the actuator controller performs physically tracking 

the desired displacements. Response quantity errors illustrate how much the RTHS solution is 

diverging from the ideal simulation solution. With semi-active control, where future control efforts 

depend on past responses, solutions can diverge quickly due to small differences. 

 

In this study, the effect of actuator coupling is investigated along with the benefits of feedback control. 

In cases when actuator coupling is neglected (i.e., ignoring off-diagonal terms of Eqn. 2.8 and 1.5 for 



feedforward and feedback controller designs, respectively), appreciable tracking error is found, 

leading to large response error. On the other hand, considering actuator coupling when designing 

multi-actuator control significantly improves the accuracy of the RTHS as measured by both tracking 

error and response error. As the amount of actuator coupling increases, for example due to a stiffer 

specimen, the benefits of considering the coupling for control design will also increase. In all cases, 

feedback control improves the accuracy of the RTHS compared to feedfoward control alone. Because 

the feedforward controller is based on a linear model of the servo-hydraulic system, the feedback 

controller will add robustness to changing specimen conditions, modeling errors, and nonlinearities. 

 
Table 3.1. RMS Error of Tracking and Response for Actuator Control Strategies. 

Actuator Control Strategy 
Tracking Error (%) Response Error (%) 

1e  
2e  

3e  1x  
2x  

3x  1x&&  
2x&&  

3x&&  

(c) FF w/o Coupling 1.71 1.99 0.910 8.92 8.75 8.77 20.1 13.2 12.2 

(d) FF w/ Coupling 0.133 0.009 0.009 1.50 1.36 1.36 7.79 4.61 3.14 

(e) FF + FB w/o Coupling 0.470 0.547 0.248 2.76 2.70 2.68 8.85 5.59 4.31 

(f) FF + FB w/ Coupling 0.045 0.003 0.003 1.34 1.26 1.25 7.09 4.14 2.76 

 

 

4. CONCLUSIONS 

 

This paper proposed a control approach for RTHS of multi-actuator systems. First, the source of 

actuator coupling for multi-actuator systems was illustrated by example. Subsequently, a framework 

for model-based multi-actuator control including both feedforward and feedback links was developed 

that directly addresses dynamics in the RTHS loop including CSI. A simple approach to identifying 

the servo-hydraulic transfer function model and its inverse for designing a model-based controller was 

also outlined. The model-based multiple-actuator controller performed very well during the simulated 

RTHS of a three-story nonlinear structure. Through this example, the benefit of considering actuator 

coupling in actuator control was demonstrated. Feedback control was shown to further improve the 

performance of the feedforward controller alone for the nonlinear structure. 
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