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SUMMARY:  

Vibration attenuation to horizontal propagating waves by using periodic foundations is investigation. Periodic 

structure theory is introduced to design a new type of isolation foundations, which has a special frequency band 

gaps (or ‘attenuation zones’) that can barrier waves/vibrations propagation.  Materials usually used in civil 

engineering are used to fabric periodic foundations with the unit cell of 1~2m, whose attenuation zones are 

obtained by investigating the dispersion relations based on the improved plane wave expansion method.  Then, 

numerical simulation is conducted to verify the efficiency of the periodic foundation.  Results show that 

periodic foundations have a great potential in future application in seismic isolation. 

 

Keywords: Structure isolation; Wave barrier; Periodic structure; Band gap; Attenuation zone 

 

 

1. INTRODUCTION 

 

Structural isolation is one of the most widely implemented and accepted seismic protection system 

(Skinner et al. 1993; Naeim and Kelly 1999).  A considerable progress has been obtained in the last 

several decades on the base isolation both in technology and theory (Ramallo and Spencer Jr 2002; 

Kunde and Jangid 2003).  Many research works have been conducted to extend base isolation 

technology to high-rise, even ultrahigh-rise buildings (Ariga et al. 2006; Fu et al. 2011), and to use 

base isolation technology for structures subjected to near-field (NF) ground motions (Jangid 2007).  

Especially, with the development of structure vibration control, some researchers proposed some 

methods to improve the performance and safety of base isolation structures by using semi-active base 

isolation systems (Lu and Lin 2009).  Large amount of researchers concentrate their attention on 

improving the properties of isolators with fiber reinforced bearings (Moon et al. 2003), and on 

studying smart/intelligent isolation systems (Johnson et al. 1998; Ramallo and Spencer Jr 2002), as 

well as on investigating the seismic responses of base-isolated structures including the dynamic 

interaction between soil and structure (Spyrakos et al. 2009).  However, owing to the tremendous 

cost of implementing base isolation technique especially for developing countries, applications can 

only be seen in structures with critical or expensive contents (Tsang 2008).  So it is very necessary 

and meaningful to find new more technically efficient and cost-efficient isolation systems (Tsang 2008; 

Jia and Shi 2010). 

 

Periodic structures are structures that consist of identical substructures, or cells, connected in an 

identical manner.  Due to the periodicity, these structures have a striking feature, the so-called 

frequency band gaps (or ‘attenuation zones’), which exhibits unique dynamic characteristics that make 



them act as mechanical filters for wave propagation (Kushwaha et al. 1993; Baz 2001).  The special 

property has many potential interesting applications, such as reducing engine noise in car cabins, 

controlling the noise in industrial halls, protecting electronic equipment on which sound waves can 

have a damaging effect and reducing traffic noise along roads.  Recently, some researchers are 

exploring possible application of this new type of structure in engineering.  Redondo et al. (2011) 

explored the potential of sonic crystals as efficient sound diffusers for applications in room acoustics.  

Based on the ideal of locally resonant sonic materials,Yang et al. (2010) developed a light-weight, 

relatively thin acoustic attenuation panel, which can barrier a broad frequency range of 50~1000Hz 

effectively.  Specially, enlightened by the concept of frequency gap existence in phononic crystals, 

Jia and Shi (2010) proposed a novel method to isolate seismic waves by directly using a two 

dimensional periodic foundation. Here, Periodic foundation is a terminology word, which denotes a 

type of foundation composited by different materials in a periodic manner.  After that, kinds of 

periodic foundation are proposed and the efficiency of these periodic foundations are examined 

(Cheng and Shi 2010; Shi et al. 2010; Xiang et al. 2010). 
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Figure 1. Schematic of a structure with periodic isolation foundation. 

 

Focused on two-dimensional periodic foundation of three components, this paper aims to investigate 

the feasibility of a type of isolated foundation, illustrated in Fig. 1.  Different from previous works, 

reinforced concrete (RC) is used. For simplicity, an equivalent orthogonal model is developed to study 

the orthogonal reinforcement of steel bars to plain concrete.  Typical dispersion relations of periodic 

foundation are obtained by the improved plane wave method and the influence of steel bars on the 

dispersion curves is investigated.  Then, taking a concrete frame structure for example, numerical 

analyses are conducted to show the efficiency of the new type of isolation foundation.  This 

investigation shows that periodic foundations have a great potential in future application in seismic 

isolation. 

 

Table 1.  Material parameters. 

Material 
Elastic Modulus  

E (GPa) 

Poisson’s ratio  

 

Density  

 (kg/m
3
) 

Rubber 1.37×10
-4

 0.463 1300 

Steel 209 0.275 7890 

Concrete 40 0.2 2500 



2. BASIC THEORIES 

 

Construction materials are used to fabricate three-component periodic structures in Fig. 2. The 

material parameters are listed in Table1.  In the present analysis, plane strain assumption in x-y plane 

will be considered.  
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Figure 2.  A periodic structure formed by coated cores. 

 

2.1 Plain Concrete  

 

Under the assumption of continuous, isotropic, perfectly elastic and small deformation as well as 

without consideration of material damping, the governing equation of waves in two dimensional 

periodic structures can be given as: 
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Where iu  is the displacement component,   the density, t  the time parameter and ijklc  the 

material parameter. According to Bloch’s theory, solutions of Eqn. 2.1 can be expressed as:  
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in which , 'G G  are the reciprocal vector, k  the wave vector, r the coordinate vector,  the angular 

frequency.  Elastic parameters are also periodic functions, which can also be expanded as: 
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Substituting Eqns. 2.2 and 2.3 into Eqn. 2.1, an eigen-value equation is obtained: 
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Owing to the high symmetry of the typical unit cell, the dispersion curve can be obtained by calculating the 

eigen-frequencies for wave vector varying just along the boundary of the so-called first irreducible 

Brillouin zone (Kushwaha et al. 1993).  Once the dispersion curves are obtained, frequency band gaps can 

be found(Cheng and Shi 2010).  

 

 



2.2 Reinforced Concrete  

 

To improve the ductility of plain concrete, concrete is always reinforced in civil engineering.  In the 

following analysis, the x and y direction of the Cartesian Coordinates are set along the two directions 

of reinforcement. To simplify the analysis, the reinforced concrete will be considered as a 

homogeneous orthotropic material and the material parameters will be determined according to the 

equivalent principle of composite mechanics. To do so, five undetermined parameters , , , ,
x y xy yx xy

E E G   

need to be expressed by the homogeneous material parameters.  Supposing that the steel bars are 

distributed uniformly in both directions and ignoring the enforcement effect from one direction to 

another, the elastic parameters ,
x y

E E  and the Poisson’s ratio can be given as: 
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In which 
x

  and 
y

  are the reinforcing ratios in the x and y directions, respectively,  
xy

v  the ratio 

of strain in y direction to the strain in x direction with the external tensor force applied in the x 

direction.   

 

On the other hand, Poisson’s ratios should also satisfy the Maxwell equation: 

              
x xy yx y
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It is obvious that Eqns. 2.5 and 2.6 cannot be satisfied simultaneously.  Considering that Eqn. 2.6 

should be satisfied for all homogeneous material, we can add any one of the later of Eqn. 2.5 to 

determine the Poisson’s ratios, which will not result in a notable difference for the Poisson’s ratios. 

 

The shear module Gxy in x-y plane can be presented by: 

   ; m i n ( , )
( 1 )

f m

xy f x y

f f m f

G G
G

G G
  

 
 

 
                                (2.7) 

 

In addition, the equivalent mass density is another important parameter, which affects the dispersion 

relationship intensively.  The equivalent mass density '  can be given as: 

(1 ) ( )'
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                                        (2.8) 

m
  and 

f
  denote the density of matrix material (concrete) and fiber material (steel), respectively.  

 

 

 

 

 



3. ATTENUATION ZONES 

 

3.1 Attenuation zones for periodic structures using plain concrete 

In the present study, the matrix and coating is always made of concrete and rubber, respectively. When 

the core is made of concrete too, a periodic structure (Type-CRC) is obtained. When the core is made 

of steel, another periodic structure (Type-CRS) is obtained. Typical dispersion curve for Type-CRC is 

shown in Fig. 3 when R=0.7m, d=0.2m and A=2.0m, where A is the periodic parameter (or the size of 

a typical cell), R the radius of the core and d the thickness of the coating. One can find that there is no 

eigen-value in the region (7.22, 10.10)Hz, the so-called first attenuation zone (AZ-1). That means that 

waves in this frequency region cannot propagate in the periodic structure. Besides the first attenuation zone, 

it is obvious that there are another two attenuation zones below 20Hz.   
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Figure 3. Dispersion curve. 

 

Taking Type CRS for example, the influences of geometric parameters R and d on the AZs are 

investigated and is given in Fig. 4.  It is found that the Low Bound Frequency (LBF) decreases with 

the increase of coating thickness for a given A and R. For a given R and d, the Upper Bound Frequency 

(UBF) decreases with the increase of periodic parameter A.  
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     (a) LBF versus the geometric parameters.      (b) UBF versus the geometric parameters. 

Figure 4. Influences of geometric parameters on the boundary frequencies. 

 

 



3.2 Effects of the steel reinforcement on the attenuation zones 

 

Reinforcing ratio is governing parameter in calculation.  In engineering design, the reinforcing ratio 

depends on the type of structure members and external loadings.  For example, for the thick plate 

lying on ground, the reinforcing ratio should be in the region 0.15% to 5% according to the structural 

concrete code (ACI-Committee-318 2008).  In order to take the extreme orthotropic into account, the 

reinforcing ratio in the x and y directions will be assumed as 0.15% and 5% in the present analysis, 

respectively.  The equivalent material parameters for reinforced concrete are listed in Table 2. 

 

Two models will be considered. Model-1means that the matrix concrete is reinforced but the core is 

plain concrete. Model-2 means that both matrix and core concrete are reinforced.  The unit cell is 

selected as A=2.0m, R=0.7m and d=0.2m for comparison.  The first three attenuation zones for both 

models are given in Table 3.  It is found that the effect of reinforcement on the attenuation zones can 

be ignored, which is very convenient for engineering applications.  

 

Table 2. Material parameters for the equivalent orthotropic material. 

reinforcing ratio Ex (GPa) Ey (GPa) vxy vyx Gxy (GPa) ρ (kg/m
3
) 

0.15%

5%

x

y








 

40.2535 48.45 0.2038 0.1693 16.69 2778 

 

It can be concluded that the dispersion curves of reinforced concreted periodic structures can be 

approximated by those of plain concrete periodic structures with the equivalent density and the elastic 

parameters.  In other word, the reinforcement of steel bars can strengthen the ductility and crack 

resistance ability for the fragile plain concrete, and has little influences on attenuation zones, which is 

very beneficial for engineering application.  

 

Table 3. Comparison of attenuation zones between two cases.  

Models 

AZ-1(Hz) AZ-2(Hz) AZ-3(Hz) 

LBF UBF WAZ LBF UBF WAZ LBF UBF WAZ 

1 7.22  9.96  2.74  15.63  15.90  0.27  15.90  16.42  0.52  

2 6.87  9.70  2.82  15.63  15.82  0.19  15.82  16.42  0.60  

 

 

4. NUMERICAL SIMULATIONS 

 

To verify the effect of this new isolation method, both the harmonic and transient responses of a 

six-story frame structure with different foundations are studied by using the ANSYS finite element 

software.  Three different foundations are considered for comparison purposes: the first is a concrete 

foundation, the second is a foundation with traditional isolation rubber bearings between the upper 

structure and the foundation, the third is a periodic foundation.  Fig. 5 illustrates the frame structure 

with different foundations. 



 

The dimension of the upper structure is 8m8m3.3m, the cross section of columns and beams are 

0.5m  0.5m and 0.5m  0.3m, respectively.  The thickness of floor is 0.1m.  The second 

characteristic frequency of the upper structure is 7.32Hz.   
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 (a) No isolation.       (b) Traditional base isolation.     (c) Periodic foundation isolation. 

Figure 5. Schematic of a frame structure with different foundations. 

 

For the traditional isolation foundation, the laminated rubber bearing GZP-500V4A is adopted in the 

present simulation. The bearings are added at the bottom of each column and nine bearings are used. 

The height and horizontal stiffness of each GZP-500V4A is 194mm and 0.91KN/mm (Dang et al. 

2007), respectively.  The third characteristic frequency of the structure with isolation bearings is 

10.10Hz.   

 

The unit cell of the periodic foundation is chosen as A=2.0m, R=0.7m and d=0.2m, whose AZ-1 

(7.22-10.16)Hz covers the second or third fundamental frequency of the structure with no isolation or 

the structure with isolation bearings, respectively.  The size of the periodic foundation is 

10m22m0.5m. 

 

4.1 Harmonic responses 

 

A horizontal dynamic displacement with unit amplitude and a single frequency is inputted on the 

nodes at the surface x=0m.  The boundary conditions are considered as: all the displacements in the z 

direction for every node at z=0m and the displacements in both y- and z-directions for every node at 

x=0m are fixed. 
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Figure 6. Displacement response function versus the incident frequency in AZ-1. 



Fig. 6 gives the maximum steady-state displacement response (20log(u/u0) in x-direction, in which u is 

the amplitude of displacement response at the roof of the structure and u0 is the amplitude of 

displacement inputted at the foundations.  Due to the horizontal incident vibration is attenuated 

dramatically by the periodic isolation foundation, the displacement response at the roof of the structure 

is reduced seriously especially in the AZ-1 region.  

 

4.2 Transient responses 

 

In order to study the transient response of the structure with different foundations, an acceleration time 

history process will be considered. The acceleration process is a superposition of several harmonic 

acceleration loads whose frequencies fall in AZ-1 and can be expressed as follows:   
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In which m

o  is the initial phase of the component with frequency 
mf AZ-1, m

o  the weight 

coefficient for 
mf , amp  a constant used to normalize the acceleration amplitude and M the total 

number of components of the acceleration process.  In the following analysis, we will take 

7.2 0.1( 1) , (1, 28) , (0 ,10 )mf m m t s s     . 
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(a) At the top surface of the foundation.                     (b) At the second floor. 

Figure 7. Acceleration responses of a structure with different foundations  

 

The time history of acceleration ( )a t  is added in the x-direction at every node at x=0m by Big-Mass 

Method. The boundary constraints are the same as given in the horizontal analysis. The acceleration 

responses at the top surface of the foundation and at the second floor of the upper structure are shown 

in Fig. 7. It is easily found that transient acceleration response of the structure with a periodic 

foundation is much lower than those with other two types of foundations.   

 

In addition, the maximum relative displacement response of the upper structure is given in Fig. 8.  It 

is observed that the maximum relative displacements of the structure without isolation system or with 

traditional isolation system are much larger than that of a structure with a periodic foundation.  
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  Figure 8. Relative displacement responses of a structure with different foundations. 

 

 

5. CONCLUSIONS 

 

The dispersion curve of a three-component periodic structure is studied and the attenuation zones are 

obtained. The influences of the geometrical parameters on the attenuation zones are discussed. The 

possibility of the periodic foundation to seismic isolation is numerical simulated and verified. Some 

conclusions can be drawn: 

 

1. Periodic foundations made of materials usually used in civil engineering can enjoy the attenuation 

zones below 20Hz.  

 

2. Effect of reinforcement on the attenuation zones can be ignored.  Attenuation zones of periodic 

foundations with reinforced matrix can be approximated by using the equivalent mass density and the 

elastic parameters of plain concrete.   

 

3. Both harmonic analysis and transient analysis show that the response of the structure with periodic 

foundation can be dramatically attenuated, especially when the incident frequency falls in the 

attenuation zones. 
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