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SUMMARY:  

This paper rigorously assesses the efficiency of using viscous dampers as the coupling elements in coupled shear 

walls. The parameter controlling the dynamic behavior of such systems is identified and its effect on various 

important responses is examined, thus, important insight to the effect of viscous dampers in those systems is 

gained. It is shown that the addition of fluid viscous dampers could effectively reduce important responses of 

walled structures. Those are: displacements, inter-story drifts, total accelerations, total base shear and 

overturning moment, and wall base shear and bending moment. In addition, the results of the analyses and the 

non-dimensional tables and graphs developed for important response parameters lead to a very simple "back of 

the envelope" method that could be easily implemented in practice for the purpose of initial design. 

  

Keywords: Seismic Design, Viscous dampers, Coupled shear walls, Viscously coupled shear walls. 

  

  

1. INTRODUCTION 

 

In the last few decades emphasize was drawn to improving the seismic performance of buildings. In 

parallel, nonstructural damage has gained attention as an additional performance measure besides 

structural damage. One of the approaches of attaining high seismic performance of structures relies on 

viscous fluid dampers (Constantinou and Symans, 1992). This approach was shown to be able to 

reduce both inter-story drifts and total accelerations, the main measures of structural and nonstructural 

damage (Lavan and Dargush, 2009). 

 

Excessive research on retrofitting of structures using viscous dampers presented practical and optimal 

design methodologies (e.g. Lavan and Levy, 2010, and references therein). Most research, however, 

was focused on the seismic retrofitting of framed structures. Recently, it has been shown that 

mounting viscous dampers in creative locations could lead to an efficient response reduction in wall 

structures as well (Rahimian, 2002; Taylor, 2002; Madsen et al., 2003; Huang et al., 2006; Silvestri 

and Trombetti, 2007; Smith and Willford, 2007; Priestly et al., 2007; Toranzo et al., 2009; Sullivan 

and Lago, 2010). The efficiency of coupling adjacent walls by coupling beams to result coupled shear 

wall systems in reducing horizontal displacements and wall bending moments has been long 

recognized. This concept was also taken advantage of by Rahimian (2002) that made use of viscous 

dampers as coupling beams in coupled truss structures. Rahimian also implemented this concept in 

practice while designing the Torre Mayor building in Mexico City (Taylor, 2002). In contrast to 

conventional coupled shear walls, here displacement and force related responses are expected to 

reduce. 

 

In this paper the parameter controlling the dynamic behavior of viscously coupled shear walls is first 

identified. Its effect on various responses of interest is then examined. The results reveal the efficiency 

of fluid viscous dampers in reducing important responses of walled structures. In addition, the non-

dimensional tables and graphs developed for important response parameters lead to a very simple 

"back of the envelope" method that could be easily implemented in practice for the purpose of initial 



design. 

 

2. STRUCTURAL MODEL 

  

The structural system considers herein consists of two walls connected by viscous dampers that can 

only transfer shear forces due to shear velocity (Fig. 2.1). Note that the relative horizontal 

displacement between the walls is restrained by the floors. 

 

             
 (a)  (b) 

Figure 2.1. Structural systems considered in the study: a) viscously coupled shear walls, and b) parameters of 

the viscously coupled shear walls. 

 

In order to attain approximate and simplified solutions the following assumptions are made: 

 A plane model is considered. This, of course, limits the discussion to structures where the 

torsional response is limited. 

 All model parameters are assumed constant along the height. While mass and stiffness are 

indeed close to uniform in most structures, the discussion is limited to constant damping along the 

height. Nonetheless, the conclusions drawn regarding feasibility of using viscous dampers in wall 

buildings, and the nature of the controlling parameter, are valid for other distributions of damping. 

 The behavior of the system can be approximated by linear analysis. As use is made of viscous 

dampers the design objective would usually limit plasticity in the structure. Hence, the damped 

structure is expected to behave linearly or close to it, and linear analysis is expected to lead to 

reasonable approximation of the behavior. Moreover, as the considered structures are "regular", 

the “equal displacements approximation” is expected to lead to reasonable results in that range. 

 Axial deformations are neglected. It is assumed that the axial deformation of the walls is small. 

This assumption is valid in cases where the damping is not too large and the deformations in the 

“damping system” (to be defined subsequently) concentrate in the dampers rather than mostly in 

axial deformations. For the range of damping typically used in buildings, this assumption seems 

reasonable. 

 The viscous dampers are linear and are assumed to be installed on relatively rigid diagonals. 
Viscous dampers can be designed, in general, as nonlinear. Linear viscous dampers, however, 

have advantages over nonlinear dampers since the forces they produce are out of phase with the 

forces due to deformations. Hence, they are adopted in this study. Those are usually mounted on 

relatively axially stiff braces to fully utilize their efficiency. 

 The walls deform in bending only, i.e. shear deformations are neglected. This assumption is 

often used for the analysis of elements of large span to depth ratio and has been extensively used 

for the analysis of conventional coupled shear walls. 

 The out-of-plane bending stiffness of the slabs is neglected. In general, the out of plane bending 

stiffness of the slabs is indeed small. Note that their effect may become considerable in very tall 

buildings. 

 The foundations are assumed to be relatively rigid. 

 When added dampers are considered, the inherent damping is neglected. It is common to 

assume a relatively small inherent damping in structures retrofitted with viscous dampers. As the 

added damping would usually result in large damping ratios, the effect of the inherent damping on 

the responses is negligible. 



 

Under the aforementioned assumptions, the structural systems can be partitioned to two systems that 

work in parallel. Those are: the “stiffness system” resisting displacements and deforms in bending, and 

the “damping system” resisting velocities where the velocities are concentrated in the dampers. Note 

that the role of the walls as part of the damping system is to transfer the forces in the dampers due to 

the velocity. The partitioning of the total structural system to its two components is illustrated in Fig. 

2.2. In the derivations that follow, reference is made to this partitioning. 

 

 
(a)  (b)  (c) 

Figure 2.2. Partitioning of the total structural system (a) to its two parallel components: the “stiffness system” 

that resists displacements and deforms in bending (b), and the “damping system” that resists velocities where the 

deformations are concentrated in the dampers (c). 

 

3. EQUATIONS OF MOTION 

 

In cases where the number of stories is relatively large, the structural system described above could be 

modelled using a continuum approach (see e.g. Rosman, 1964). For the continuum model an 

analytical, or a semi-analytical, solution could be attained. The equation of motion of the continuum 

model of the system assuming constant values of the parameters throughout the height of the structure 

is given by: 
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where u=horizontal relative displacement as a function of time, t, and height, z; m=mass per unit 

length; EI=flexural rigidity of the walls; c=added shear damping as given below; and ug=ground 

acceleration. The sum of the first expression on the left hand side and the expression on the right hand 

side of Eqn. 3.1 represents the external forces required to maintain the absolute accelerations of the 

system at time t. The second expression on the left hand side represents the external forces required to 

maintain the velocities of the system at time t. The system resisting those forces is the “damping 

system” (Fig. 2.22c). The third expression on the left hand side of Eqn. 3.1 represents the external 

forces required to maintain the displacements of the system at time t. The system resisting those forces 

is the “stiffness system” (see Fig. 2.2b). The parameters take the values EI=EI1+EI2 and 

 2222 bhhldcc d   (see parameters' description in Fig. 3.1b).  

Equation Error! Reference source not found.3.1 is accompanied by the following boundary 

conditions (relative displacement and angle at the base, wall moment and total shear at the top all 

equal zero). 
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where H=wall height. Eqn. 3.1 and the boundary conditions (Eqn. 3.2) can be brought to the following 

non-dimensional form: 
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where HumEIcmHEItHzHu gg   ;2;;; 24
, a dot represents a 

derivative with respect to   and a tag represents a derivative with respect to  . As can be seen from 

Eqn. 3.3 and 3.4, the response is controlled by the excitation (hence time scaling parameters) and by 

  only. Note that the non-dimensional free vibration equation is dominated by a single compact 

parameter, namely  . Note also that, in contrast to coupled shear walls, the controlling parameter in 

the viscously coupled shear walls, mEIc221 , does not depend on the height of the structure. 

This is a very important observation since it implies that this system can be efficient also for low-rise 

buildings. For a given solution of the non-dimensional Eqn. 3.3,   , , the responses of interest 

could be evaluated.  

 

4. EIGEN ANALYSIS 

 

Caughey and O'kelly (1965) have shown that a continuously damped linear dynamic system would 

possess classical normal modes if two conditions are met. The first condition requires that the 

differential operators acting on the velocity and the displacement commute. This condition is satisfied 

by the equation of motion at hand (Eqn. 3.3). The second condition requires that the boundary 

conditions on the higher order operator would be derivable from a compatible set of boundary 

conditions on the lower order operator. This condition is not satisfied by the boundary conditions of 

the problem at hand (Eqn. 3.4). Hence, complex mode shapes are expected. 

 

Let us first solve the non-dimensional free vibration equation (the homogeneous counterpart of Eqn. 

3.3) by assuming a solution of the form      e,  where   = a complex function (mode 

shape) and  = a complex number. Substituting the assumed solution to the homogeneous counterpart 

of Eqn. 3.3 with its B.C. given by Eqn. 3.4, leads to the following equation and B.C. for   : 
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Equation 4.1 is an ordinary linear differential equation with constant coefficients. Its solution may be 

written as    e  where  = a complex number. Substitution of this solution in Eqn. 4.1 implies 

that 02 224   , thus  12    . Hence, the solution of Eqn. 4.1 is of the 

form 
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where A1-A4 are complex constants of integration whose values are to be determined by imposing the 

boundary conditions. Imposing the B.C. from Eqn. 4.2, and assuming 0  (to avoid the trivial 

solution) one obtains a set of linear homogeneous algebraic equations for the constants A1 through A4. 

For    to have a nontrivial solution the determinant of the coefficient matrix in this equation should 

vanish. This leads to an equation in   for which an infinite number of solutions exist. For each value 

of  , corresponding values of the constants A2 through A4 can be obtained by substituting A1=1+I 

(where 1I ), for example, and solving the remaining three equations in the set of homogeneous 



algebraic equations. Using the attained values for   and the corresponding constants A1 through A4 in 

Eqn. 4.3 leads to the mode shapes. Observe that each set of complex eigenvalue and eigenvector is 

accompanied by its complex conjugate as a solution. It can be shown that for those the circular 

frequency of vibrations is the absolute of i, or ii   , and the damping coefficient is 

  iii  Re  where Re( ) is the real part of a complex number. For reasonable values of 

damping, all eigenvalues are expected to be complex, i.e. underdamped. The above procedure was 

executed for various values of  . Modal parameters for the first three modes are given in Table 4.1. 

 
Table 4.1. Modal properties for various damping magnitudes  

 =0.0 =0.1 =0.2 =0.3 =0.4 

Mode 
i  

i  i  
i  i  

i  i  
i  i  

i  

1 3.516 0.000 3.525 0.132 3.553 0.266 3.606 0.403 3.697 0.546 

2 22.035 0.000 22.067 0.148 22.181 0.300 22.454 0.462 23.197 0.649 

3 61.697 0.000 61.704 0.126 61.730 0.255 61.808 0.391 62.098 0.551 

 

Note that the values attained for =0, as expected, coincide with the values known from the free 

vibrations analysis of a bending cantilever. Note also that the natural frequencies vary very little with 

the addition of . The damping ratio of each mode, on the other hand, varies significantly with , 

again, as expected. 
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5. COMPLEX MODAL SPECTRAL ANALYSIS 

 

Procedures for modal spectral analysis have been proposed to discrete systems with nonproportional 

damping (see e.g. Song et al., 2008). The derivations that follow, for a modal spectral analysis of the 

continuous system, are inspired by that method. For that purpose the state space formulation is used in 

the following discussion. 

 

5.1. Eigen analysis in the state space  

 

Equation 3.3 can be formulated in state space notation as: 
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Assume the following solution to the homogeneous counterpart of Eqn. 5.1: 

 

     eψy ,  (5.3) 

 

where       T
 

ψ . Substitution of this solution to the homogeneous counterpart of Eqn. 

5.1 leads to the following eigenproblem: 
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This set of equations reveals that     
  and leads to the following eigenproblem for 

  :       022   
IV

. This problem is identical to the eigenproblem that was 

solved in the previous section. This is attained by setting      . It should be noted that if   

and  ψ  are solutions of this eigenproblem then 
*  and  *

ψ  also satisfy this eigenproblem. In 

addition, the eigenfunctions possess orthogonality properties (not shown or derived here). 

 

5.2. Modal analysis 

 

For the purpose of uncoupling the state equations (Eqn. 5.1) their solution is first written as a sum of 

modal contributions as: 
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Substitution of the assumed solution from Eqn. 5.5 to Eqn. 5.1, premultiplying by 
T

iψ , integrating 

from 0  to 1  and interchanging the order of summation and integration lead to 
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Integrating by parts the terms in Eqn. 5.6 having expressions involving various orders of derivatives of 

 i  and   j , and using the orthogonality conditions with the boundary conditions of Eqn. 4.2 

one obtains the following equation for mode i: 

 

         

1

0

 dlzbza giiiii


 

 (5.7)

 
where 

     
1

0

22 22  da
iiii

         

     
1

0

222  db
iiii  (5.8)

  

A similar equation could be derived for the conjugate solution. It should be noted that in the range of 

damping reasonable for buildings no overdamped modes are to be expected (see Table 4.1), hence 

such modes are not dealt with herein. The contribution of the complex valued mode i and its conjugate 

to the Laplace transform of the state vector is obtained by transforming their contribution in Eqn. 5.5 

using the Laplace transform as: 
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where  sg
  is the Laplace transform of the ground acceleration, or, using Eqn. 5.2: 
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where i(,s) is the Laplace transform of i(,. Substituting here  sZi
, the Laplace transform of 

 iz , obtained by taking the Laplace transform of Eqn. 5.7, and using Eqn. 5.8, it can be shown that: 
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() is the imaginary part of Ri(). Applying inverse Laplace 

transform to Eqn. 5.11 the contribution of the complex valued mode i and its conjugate to the 

displacements and velocities in the time domain is obtained: 
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Responses of interest can also be brought to the following general form: 

 

          iiiii qBqAx ,0,0,0 ,    (5.13)

  

where  ,,0 ix  is the contribution of the mode i and its conjugate to the response of interest and 

 iA ,0
 and  iB ,0

 are its corresponding coefficients.  

 

5.3. Modal spectral analysis 

 

The peak contribution of the mode i and its conjugate to the response of interest can be estimated by 

means of a response spectrum analysis (see Song et al., 2008) as       ii qBAx
iii max,

222

max,,0 ,0,0
  . 

Here  ix max,,0
 is the peak contribution of the mode i and its conjugate to the response of interest and 

iqmax,
 is the peak value of  iq . In contrast to Song et al. (2008) where the coefficients A0,i and B0,i 

were multiplied by the spectral displacement to attain a desired response, it is proposed here to use 

somewhat different coefficients that would be multiplied by the spectral pseudo acceleration. This 

leads to 

 

         iaiii SRqBAx
iiiii ,,0max,

22222

max,,0 ,0,0
   (5.14)

  

where     2222

,0 ,0,0 iiii
BAR i    and 

iaS ,
 is the spectral pseudo acceleration. As the periods of the 

various modes are widely spread (see Table 4.1), thy can be combined using the SRSS rule leading to 

a good approximation of the peak response. Similar expressions for 
iR ,0
 were derived for additional 

responses in the non-dimensional domain. Figure 5.1 presents graphs of these coefficients as function 

of height. Each graph presents the coefficient using 5 values of  0, 0.1, 0.2, 0.3, 0.4. The first row in 

Fig. 5.1 presents the contribution of the first pair of conjugate modes while the second and third rows 

present the contributions of the second and third pairs of modes, respectively. Those can then be 

brought to the dimensional domain as follows: 
idiD REImHR ,

4

,   ; 
iidiID REImHR ,

3

,   ; 
iaiA RR ,,   ; 

itsiTS RmHR ,,   ; 
iwsiWS RmHR ,,   ; 

idsiDS RmHR ,,   ; 
itmiTM RmHR ,

2

,   ; 
iwmiWM RmHR ,

2

,   ; 

idmiDM RmHR ,

2

,  . 

 



 

Figure 5.1. R coefficients for various responses (columns) for the first three modes (rows) using various 

damping values (=0 continuous, =0.1 dashed, =0.2 dotted, =0.3 dashed-dotted, =0.4 dashed thick). 

 

6. DISCUSSION ON THE EFFECT OF  

 

The effect of  is explored by plotting (Fig. 6.1) the R coefficients as they are multiplied by the value 

of      iaiai SSR   02.007.005.0,
. Here 

,iR
 is the conversion factor from pseudo-acceleration 

computed for 5% damping,  0.05aS , to pseudo-acceleration for a damping ratio 
i ,  a iS  . This 

expression is adopted from Eurocode 8 (CEN) and was found by Priestly et al. (2007) to better suite 

time history responses than other expressions. To obtain the contribution of each pair of conjugate 

modes to the desired response, the plots in Fig. 6.1 are to be multiplied by the pseudo acceleration at 

the relevant period, with 5% damping, irrespective of i. The plots in Fig. 6.1 for the various values of 

 can thus be directly compared to gain some insight on the effect of . The values presented for =0 

represent the structure with no added damping, but with 5% Caughey damping, i.e. 5% damping in 

every mode. Note that here the analysis of the viscously damped structures ignores the inherent 

damping in each mode. This approximation is often made when damping is added to the structure and 

its deformations considerably reduce. As can be seen, a  value of 0.2 leads to a reduction of circa 

40%-50% in all responses except those in the damping system. Values of >0.2 may lead to a further 

slight reduction in those responses. This, however, will be accompanied by a large increase in the 

forces in the damping system. In turn, this would lead to a large increase in the peak forces in the 

dampers and axial forces in the walls. 

 

Hence it is suggested using values of ≤0.2. It should be noted that other approximations for the effect 

of damping ratio on Sa are available. Those are expected to lead to the same conclusions with a slightly 

different threshold value for the maximum suggested . They may also lead to a different reduction in 

the pseudo acceleration, hence, the responses. As can also be seen from Fig. 5.1, the higher modes 

effect on various responses is expected to have the same characteristics as the effect of higher modes 

on the undamped system. That is, in relatively tall buildings, shear forces and bending moments are 

expected to be affected by higher modes. Nevertheless, the addition of damping seems to somewhat 



reduce its magnitude. Another point worth noting is the increase of wall shear forces in the higher 

stories compared with the undamped structure. This result is expected, and has long been recognized 

in the case of coupled shear walls and wall-frame systems. 

 

 

Figure 6.1. R coefficients multiplied by R for various responses (columns) for the first three modes (rows) using 

various damping values (=0 continuous, =0.1 dashed, =0.2 dotted, =0.3 dashed-dotted, =0.4 dashed thick). 

  

7. CONCLUSIONS 

 

In this work the natural frequencies and damping ratios, as well as height-wise distributions of 

important modal responses, were derived for viscously coupled shear walls or wall-viscous frames. 

The table and graphs presented can easily be used in the design process for initial design to form a 

simple performance-based design algorithm where the required uniform damping for a desired 

response is computed. The derivations and results lead to the following observations: 

1. Under the assumptions made, a single parameter controls the response reduction of viscously 

coupled shear walls or wall-viscous frames w.r.t the corresponding uncoupled wall system. 

2. In contrast to conventional coupled shear walls and wall-frame structures, the controlling 

parameter in the viscously coupled shear walls, mEIc221 , does not depend on the 

height of the structure. This is a very important observation since it implies that this system 

can be efficient also for low rise buildings. Of course, depending on the aspect ratio, shear 

deformation of the wall system (not considered here) may play a role in those systems and 

should be accounted for.  

3. The addition of damping can lead to a considerable reduction in most responses of interest (up 

to 60% for cases where the relation given by Eurocode 8 for the effect of damping on SDOF 

systems' response holds) in most responses of interest. These are: displacements, inter-story 

drifts, total accelerations, total and wall shear, overturning moment and wall bending 

moments. 

4. Increasing  further than 0.2 may lead to a slight further reduction in the responses listed in 

Item 2 above. This, however, will be accompanied by a large increase in the forces in the 

damping system. In turn, this would lead to a large increase in dampers’ peak forces and in 



columns/walls axial forces. Hence, it is suggested using values of ≤0.2. Based on R from 

Eurocode 8 and the derivations in this paper for =0.2 circa 50% reduction in most response 

values can be attained. The force in the most loaded damper in this case would be circa 

2 219DF h l d b d   % of the base shear of the undamped structure, and the damper 

stroke would approximately be 
2 20.5 undampedstroke l d d b ID      where undampedID  is 

the inter-story drift of the undamped system (%). 

5. From Item 4 it can be concluded that for the same response reductions in two buildings having 

the same geometric properties h, d, b, and l, but with a different height, H, mass, m, and 

stiffness EI, the ratio of the force at the most loaded damper to the undamped base shear, 

would be similar. That is, the design damper forces are expected to be smaller in lower 

buildings, showing, again, the applicability of the concept to low raise buildings. 

6. In cases where the higher modes effect in the undamped structure is considerable, it is 

expected to remain considerable in the damped structure as well. Its effect, however, is 

expected to be somewhat less pronounced with increasing . 
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