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SUMMARY: 
Seismic fracture response of Koyna dam is examined by a plastic–damage model in different damping 
mechanisms. The plastic–damage model implemented in three-dimensional space was proposed by Lee and 
Fenves in 1998. It was founded on the combination of non-associated multi-hardening plasticity and isotropic 
damage theory. In this study, utilizing the HHT scheme as an implicit operator, responses of Koyna dam as a 
benchmark problem for the seismic fracture researches, are compared due to constant and damage-dependent 
damping mechanisms. It is concluded that employing the damage-dependent damping mechanism leads to more 
extensive damages and also predicts more reliable crack patterns in comparison with the constant damping 
mechanism. Furthermore, considering dam–reservoir interaction intensifies the existing differences between the 
results of the two different damping mechanisms. The results emphasize that water compressibility and damping 
mechanism are two important issues in seismic safety evaluation of concrete gravity dams. 
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1. INTRODUCTION 
 
There are numerous high concrete dams throughout the world. However, their fracture responses 
under strong ground excitations have been monitored and reported only in a few cases. Koyna dam in 
India experienced a destructive earthquake in 1967. The Koyna earthquake with a maximum 
acceleration of around 0.5g caused major damage to the dam including horizontal cracks on the 
upstream and downstream in a number of its non-overflow monoliths (Chopra and Chakrabarti 1973).  
 
In order to assess the seismic safety of concrete dams, nonlinear models simulating crack propagation 
within the dam body need to be employed. To accurately simulate the degradation in the mechanical 
properties of concrete, the use of continuum damage mechanics is necessary. However, concrete also 
experiences some irreversible deformations during unloading such that the continuum damage theories 
alone cannot be used successfully. Therefore, concrete can be realistically simulated by two separate 
material mechanical processes: damage and plasticity. Plasticity theory has been widely used to 
describe the concrete behavior (Menetrey and Willam 1995; Grassl et al. 2002). The main 
characteristic of these models is a yield surface that includes pressure sensitivity, path sensitivity, non-
associative flow rule, and work or strain hardening. However, these investigations fail to address the 
degradation of the material stiffness due to micro-cracking. On the other hand, the continuum damage 
theory has also been employed to include the mechanical effect of the progressive micro-cracking and 
strain softening are represented by a set of internal variables (i.e. decrease of the stiffness) at the 
macroscopic level (Loland 1980; Mazars and Pijaudier-Cabot 1989; Valliappan et al. 1991; Cervera et 
al. 1995; Valliappan et al. 1996). The use of coupling between damage and plasticity has been found 
to be necessary for capturing the observed experimental-based behavior of concrete (Lemaitre 1985; 
Lubliner et al. 1989; Lee and Fenves 1998a, 2001; Menzel et al. 2002; Salari et al. 2004; Wu et al. 
2006; Grassl and Jirasek 2006; Cicekli et al. 2007; Voyiadjis et al. 2008; Abu Al-Rub and Voyiadjis 
2009). 



However, only a limited number of studies have been performed to investigate the dynamic behavior 
of concrete dams using a plastic–damage constitutive law (Lee and Fenves 1998b; Wu and Li 2007; 
Sarkar et al. 2007). The plastic–damage model, which was originally proposed by Lubliner et al. in 
1989 and later on modified by Lee and Fenves in 1998, is employed herein to investigate the nonlinear 
dynamic behavior of concrete dams in two different damping mechanisms. It should be emphasized 
that the available implementation of the model is limited to 2-D plane stress state. This study utilizes 
the model in 3-D formulation implemented in a special finite element program, SNACS (Omidi 2010) 
for the seismic application to Koyna dam in 3-D modelling. 
 
 
2. PLASTIC–DAMAGE CONSTITUTIVE LAW 
 
The constitutive relations of the plastic–damage model are fully described by Lee and Fenves in (Lee 
and Fenves 1998a, 2001). In the 3-D implementation of the model, the apex’s singularity of the linear 
potential function proposed and used by Lee and Fenves needs to be avoided. Moreover, singularities 
of the yield surface must be taken into account. Computational aspects of the treated model in 3-D 
space along with the stress update algorithm are thoroughly discussed in (Omidi and Lotfi 2010a). 
However for the sake of clarity and completeness of this paper, a brief description is presented herein. 
 
2.1. Framework of plastic–damage model 
 
In order to describe full states of damage on the elastic stiffness in a three-dimensional stress state, a 
4th-rank tensor needs to be used (Voyiadjis et al. 2008). However, scalar degradation damage models 
are useful for practical applications due to simplicity (Grassl and Jirasek 2006; Nguyen and Korsunsky 
2008; Saritas and Filippou 2009). Furthermore, a scalar representation for damage on the stiffness can 
be significantly enhanced to predict various states of damage when it is combined with plasticity 
theory. The fundamental relations of a rate-independent plastic–damage model as the backbone model 
of its corresponding rate-dependent extension can be expressed as follows. 
 
2.1.1. Stress-strain relationship 
The strain tensor, ε , is decomposed into the elastic part, eε , and the plastic part, pε . The elastic part is 
defined as the recoverable portion in the total strain. The stress,σ , and the effective stress,σ , are as: 
 

p
0(1 )  ;     : ( )= − = −Dσ σ σ E ε ε                                                                                        (2.1)

        
where 0E  is a rank-four elastic stiffness tensor. The degradation damage variable, D , is used to 
represent a scalar form of damage in the elastic stiffness.  To determine the required effective stress 
tensor, the evolution law for the plastic strain tensor needs to be established. The evolution law of the 
plastic–damage variables (i.e., tκ and cκ ) playing the role of hardening variables, in addition to the 
plastic strains, is necessary to be specified. These evolution laws are given by: 
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where Φ is a scalar potential function; λ  is a nonnegative function referred to as the plastic 
consistency parameter and H , which actually represents hardening components, is derived 
considering plastic dissipation. Furthermore, the damage variables in tension and compression, which 
are denoted by tD and cD respectively, are explicit functions of the plastic–damage variables in tension 
and compression introduced above. Since the model is accurately capable of capturing the two major 
damage phenomena, the uniaxial tensile and compressive ones, multi-dimensional degradation 
behavior can be possibly evaluated by interpolating between these two main damage variables as: 
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in which s is called the stiffness recovery parameter such that 0 1s≤ ≤ and used to include the elastic 
stiffness recovery during elastic unloading process from tension to compression: 
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where 0s is a minimum value for s usually set to zero; r  is a weight factor and x〈 〉  is the ramp 
function (i.e., ( ) / 2x x x〈 〉 = + ). 
 
2.1.2. Non-associated flow rule 
The Drucker–Prager hyperbolic function is employed here as the plastic potential function: 
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where 1I  and 2J are the first and second invariants of the effective stress tensor; the parameter 

pα should be calibrated to give proper dilatancy; t0f  is the maximum uniaxial tensile strength. 

Moreover, 0ε , which is called the eccentricity parameter, controls how the function approaches the 
asymptote (i.e., the linear function). Based on theory of plasticity, loading/unloading conditions are 
derived from the Kuhn–Tucker relations which are given in terms of the yield function ( , )F σ κ and the 

plastic consistency parameter as 0 ;   ( , ) 0 ;   ( , ) 0 F Fλ λ≥ ≤ =σ κ σ κ . Lee and Fenves modified the 
yield function in the Barcelona model (Lubliner et al. 1989) to include two cohesion variables for 
tension and compression. In fact, the tensile and compressive cohesion variables in the yield function 
are necessarily included due to different tensile and compressive yield strengths.  
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where maxσ̂ is the maximum principal stress; α is a parameter evaluated  on the basis of an initial 
shape of the yield function and γ  is a coefficient affecting only the states of  tri-axial compression. 
Moreover, β , which is a constant in the Barcelona model, was later modified by Lee and Fenves as: 
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in which, tc and cc are tensile and compressive cohesion variables, respectively. 
 
2.2. Large crack opening/closing 
 
The evolution relation used for the damage variables needs to be modified to simulate large cracking 
in such a continuum model (Lee and Fenves 1998b). The crack opening/closure mechanism becomes 
similar to a discrete crack after that a large damage is sustained in tension region, i.e. t crκ κ>  where 

crκ  is an empirical value usually close to unity. At such a tensile damage level, the evolution of plastic 
strain caused by tensile damage is stopped and the plastic strain rate is computed as: 
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in which, pε is referred to as the intermediate plastic strain; r is a weight function and σ is also the 
intermediate effective stress defined as: 
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In this condition, the intermediate plastic strain rate is given by p

 λ Φ= σε ∇ . To make the effective 
stress based on the plastic strain admissible in the stress space, it is necessary to employ a new damage 
variable denoted by crD at the crack damage corrector which makes the evaluated effective stress 
return back onto the yield surface. This is determined by the plastic consistency condition for a 
continued loading such that   cr((1 ) , ) 0F D− =σ κ  from which crD is obtained as cr c1 ( ) ( , )= −D c fκ σ κ . 
The stiffness degradation variable is redefined considering large cracking as follows: 
 

  c t cr1 (1 )(1 )(1 )D D s D s D= − − − −                                                                                    (2.10) 
 
The numerical implementation and the stress update algorithm modified to consider large cracking 
possibilities have been detailed in (Omidi and Lotfi 2010, 2012).  
 
2.3. Rate-dependent extension 
 
Employing visco-plastic regularization reduces the dependency on mesh refinement and alignment 
(Lee and Fenves 1998b). Furthermore, convergence difficulties in material constitutive laws 
simulating softening behavior and stiffness degradation can be partially overcome by using its rate-
dependent extension. Both plastic strain and degradation variable are regularized herein by adding 
viscosity with the Duvaut-Lions regularization. The visco-plastic strain rate tensor, vpε , and the 
viscous stiffness degradation variable, vD , for the visco-plastic system are defined, respectively by: 
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where μ , which is called the viscosity parameter, shows the relaxation time of the visco-plastic 
model; pε and D are the plastic strain and stiffness degradation variable computed in the inviscid 
backbone model. The governing stress-strain relation for the rate-dependent model would be as: 
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2.4. Visco-elastic damping stress 
 
The visco-elastic damping stress in the constant damping mechanism is expressed as the following: 
 

R 0( ) :χ ε E ε= β                                                                                                                (2.13) 
 
where Rβ  is the coefficient of viscous damping and calibrated to provide a damping ratio at one 
natural vibration period. This kind of damping introduces artificial damping forces as cracks open with 
large relative velocity and the damping force then restrains the crack opening by transferring artificial 
stresses across the crack. To remedy this problem, some investigators set the damping term to zero 
upon cracking of an element or use the tangent stiffness matrix (Horii and Chen 2003). On the other 
hand, a nonlinear form of visco-elastic damping called damage-dependent damping is based 
consistently on the elastic properties accounting for degradation damage (Lee and Fenves 1998b) as: 
 

 R 0( , ) (1 ) :Dβ= −χ ε ε E ε                                                                                                   (2.14) 



3. TIME INTEGRATION SCHEME WITH DAM–RESERVOIR INTERACTION 
 
The Lagrangian–Eulerian formulation, in which displacement and pressure are unknown variables for 
dam and reservoir, respectively, is utilized to construct the governing coupled equations. The 
equations of motion may be written as follows for the discretized dam under ground acceleration: 
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where M is the mass matrix of dam body; u , u and u represent the nodal vectors of the displacement, 
velocity and acceleration relative to the ground motion, respectively; U is the vector of absolute nodal 
acceleration; P denotes the restoring force vector; Q is often referred to as interaction or coupling 
matrix; p represents the vector of nodal hydrodynamic pressures and stR is the static loads 
vector; ga denotes the vector of ground accelerations and J is a matrix with each of the three rows 
equal to a 3×3 identity matrix. It is noted that in the current implementation, the element’s restoring 
force vector, eP , is given by the integral of the total stress including damping stress over the element 
volume. The mass-proportional term for the damping matrix has been omitted, because it would 
provide some artificial numerical stability during time marching process. Furthermore, one can apply 
Galerkin method to the wave equation and impose related boundary conditions to obtain the following 
relation for the discretized reservoir domain:  
 

     ρ+ + = −G p L p H p Q U                                                                                                 (3.2) 
 
where  ,G L and H are called generalized mass, damping and stiffness matrices, respectively. In order 
to construct the coupled equations set of the system consistently, the governing equations for the dam 
and reservoir are restated as the following, respectively: 
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Now one could set up the following coupled equations: 
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where   

st
g= −R R M J a and    gρ′ = −R Q J a . Considering u , u  and u as total displacement, velocity 

and acceleration vectors with the following definitions: 
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Denoting M as the total mass matrix, Eqn. (3.5) could be written in a more compact form as:  
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Numerical damping associated with the time-stepping schemes used for integrating second-order 
systems of equations over time stabilizes the numerical integration by damping out the unwanted high 
frequency modes. For the Newmark method, numerical damping also affects the lower modes and 



reduces the accuracy of integration scheme from second order to first order. For the HHT method, 
numerical damping affects only the higher modes and always maintains second-order accuracy. Larger 
numerical damping values are usually necessary for problems involving rigid body rotational motion 
and dynamic contact/impact (Lee and Fenves 2001). Utilizing the HHT integration scheme, the 
discrete form of the governing equilibrium equation, Eqn. (3.7), is written at the time step 1n +  as: 
 

 1 ( , )n n n nϕ ϕ ϕ+ + + ++ − =M u F u u R 0                                                                                    (3.8) 
 
where 1ϕ α= + and α is the free parameter controlling the amount of the numerical dissipation, 
which is increased by decreasing α . The recommended range for α  is [ 1 3,0]−  to achieve 
unconditional stability, second-order accuracy and good high-frequency dissipative characteristics. It 
is noted that the generalized mid-point scheme is only used for the equations of motion 
(i.e., ϕ+nu and ϕ+nu ) and the applied force, n ϕ+R . Since employing the generalized mid-point scheme 
in the stress computation does not have robust numerical performance (Simo 1991), the stresses 
needed for the restoring force vector, n ϕ+P , is integrated based on the shifted backward-Euler scheme 
(Lee and Fenves 2001), in which the internal variables are directly computed at nt ϕ+ rather than 1nt + . It 
should be noted that the shifted scheme becomes the original method in 1[ , ]ϕ ϕ+ − +n nt t . 
 
 
4. FRACTURE RESPONSE OF KOYNA DAM 
 
This section focuses on the seismic fracture response of Koyna dam which has been broadly examined 
by many investigators as the main validation of their proposed concrete models (Bhattacharjee and 
Leger 1993; Lee and Fenves 1998b; Guanglun et al. 2000; Mirzabozorg and Ghaemian 2005; Calayir 
and Karaton 2005). Koyna dam is a 103 m high concrete gravity dam located in India and constructed 
in 1963. It was subjected to the 1967 earthquake of magnitude 6.5 and was severely damaged (Chopra 
and Chakrabarti 1973). Its scaled model was also experimentally tested by Hall in 1988.  
 
4.1. Mesh, model parameters and loading 
 
The simulation is based on the 3-D modeling of a slice of a typical monolith depicted in Fig. 4.1a. The 
cracked configuration experimentally observed is also shown in this figure (Hall 1988). The 8-node 
isoparametric solid and fluid elements are utilized to discretize the dam and reservoir domains, 
respectively as illustrated in Fig. 4.1b. The material properties are as: 0 30.0 GPa=E , 0.2ν = , 

t 2.9 MPa′ =f , c 24.1 MPa′ = −f , t 200 N/m=G , c 20000 N/m=G and  0.1 tμ = Δ . Moreover, 
0.005 sectΔ = and 0.3α = −  are selected as the analysis parameters. The thickness of the slice is one 

meter and the dam body is assumed to be in a state of plane stress. The length of the reservoir 
simulated in the model is 2.5 times of the reservoir height while the reservoir bottom is assumed to be 
partially reflective with the wave reflection coefficient equal to 0.85. The unit weights of concrete and 
water are assumed as 25.8 and 9.81 kN/m3, respectively. The stiffness proportional damping factor is 
computed such that 3 percent damping is being captured for the fundamental vibration period.  
The static loads are applied at negative range of time in 10 increments each before the earthquake 
excitation is employed. Afterwards, 10 sec of the horizontal and vertical components of the 1967 
earthquake records shown in Fig. 4.1c are applied to the base of the dam and reservoir starting at time 
zero. The time integration is performed for 15 sec of which the last 5 sec is free vibration. 
 
4.2. Results for damage-dependent damping mechanism 
 
Fig. 4.2 shows the stream displacement at the left corner of the crest relative to the ground motion 
while positive horizontal displacement is in the downstream direction. The four different times marked 
in Fig. 4.2 are focused to track the damage evolution in the dam body (Fig. 4.3). 



 
Figure 4.1. Koyna gravity dam: (a) geometry of the tallest monolith (unit: m) along with cracked zone 

experimentally observed (Hall 1988), (b) mesh and (c) the 1967 Koyna earthquake components 
 

 
Figure 4.2. Crest stream displacement history with damage-dependent damping mechanism 

 

 

Figure 4.3. Evolution of tensile damage, tD (left) and degradation variable, D (right) in the analysis with dam–
water interaction using damage-dependent damping mechanism  



As observed in Fig. 4.3a, near the downstream change of slope, a crucial damage has occurred and the 
localized band of damaged elements is formed by time t1. Curving down due to the rocking motion of 
the upper block, this downstream crack propagates toward the upstream direction. When the dam 
displaces toward downstream at time t2, some damaged elements appear at the base (Fig. 4.3b). This 
crack propagates into the dam along the lowest layer of the elements at the base due to the rigid 
foundation. Furthermore, at this major deformation to the downstream direction (i.e., time t2), the load 
is reversed and as it is now expected, the crack having occurred at downstream closes ,which 
obviously shows the stiffness recovery on this region due to compressive stresses. At this time, a 
horizontal crack propagating toward the curved part of the downstream crack is formed. As noticed, 
the tensile damage has very well localized on just one layer of the elements along the upstream face. 
At time t3, the dam moves toward upstream again and as illustrated in Fig. 4.3c, all cracks have 
occurred in the body by this time and from now on the upper block of the dam oscillating back and 
forth during the rest of the earthquake remains stable while the upstream and downstream cracks 
alternatively close and open. At time t4, the damages captured in Fig. 4.3d shows that the crack at the 
base remains stable and does not propagate further. 
 
4.3. Results for constant damping mechanism 
 
Employing the constant damping mechanism, Koyna dam is reanalyzed herein. Fig. 4.4a shows the 
distribution of tensile damage at the end of the simulation. Similar to the analysis carried out with 
damage-dependent damping mechanism, three major cracks developing during the earthquake are at 
the base of the dam, at the downstream change of slope and at the upstream face near to the upper part 
of the dam. The captured crack pattern when the analysis employs the constant damping mechanism is 
quite different from the corresponding one while the damage-dependent damping is employed in the 
analysis. Actually, this kind of damping utilizing the linear form of visco-elastic damping stress 
creates artificial damping forces as cracks open with large relative velocity and the damping forces 
then restrains the crack opening by transferring artificial stresses across the crack. In some previous 
studies, Koyna dam has been analyzed using constant damping but considering a reduced tensile 
strength along with reduced fracture energy in tension (Calayir and Karaton 2005]. Under these 
circumstances, one would expect the dam to undergo more damages. In these analyses, the tensile 
strength and the fracture energy are assumed as t 1.5′ =f MPa and t 150G = N/m, respectively (Fig. 4.4b) 
although more severe damage has occurred in the dam body in comparison with the original material 
data, no clear macro crack can be observed and the upper cracked zones are not localized while the 
crack profile also differs from the experiment. 
 
4.4. Water compressibility effects 
 
In order to assess the influence of water compressibility on the cracking response of the dam, the dam–
reservoir interaction is taken into account by the widely-used added mass approximation. Results are 
compared for damage-dependent damping and constant damping in Fig. 4.4c and 4.4d. 
 

 

Figure 4.4. Damage distribution using constant damping (left) and using the added mass approximation (right) 



5. CONCLUSIONS 
 
A special finite element program called SNACS has been developed for the non-linear seismic 
evaluation of concrete dams based on a plastic–damage approach. The model implemented for 3-D 
stress state had been successfully employed in its 2-D version for the analysis of concrete gravity dams 
with 2-D plane stress state by Lee and Fenves. The constitutive model objectively represents 
localization of damage caused by strain softening. Damping is consistently accounted for using the 
reduced stiffness caused by damage degradation. Utilizing the damage-dependent and constant 
damping mechanisms, SNACS program is employed in analyzing Koyna gravity dam and comparing 
the results with the available experimental observation. The comparison between the cases of different 
damping mechanisms reveals major differences in the results. Seismic cracking response of Koyna 
dam indicates that the dam remains stable at all times during earthquake excitation. The evolution of 
damage in the dam during the earthquake is consistent with the observed cracking in the dam when the 
damage-dependent damping mechanism is being utilized. After cracks form near the change in 
downstream slope at both faces, the upper portion of the dam rocks nearly as a rigid body. Moreover, 
the damaged zone is localized, generally one element wide, demonstrating that the localization 
behavior caused by strain softening is represented satisfactorily in the plastic–damage model 
implemented in three dimensional spaces of present study. This had been previously shown in two-
dimensional representations by other researchers. On the other hand, when the constant damping 
mechanism is employed in the analysis, the resulting crack profile has no agreement with that reported 
experimentally. Besides, the upper cracked zone at the slope change in this option is not localized.  
 
Furthermore, the seismic fracture response of Koyna dam is also conducted when the effect of the 
dam–reservoir interaction is taken into account. Results of the analysis are compared to the case when 
the dam–reservoir interaction was represented by added masses. It is found that including dam–
reservoir interaction gives a crack pattern that is closer to the damaged configuration observed in its 
experimental counterpart. The predicted damage zone is different from that of the case when the dam–
reservoir interaction is approximated using the added mass approach. The results emphasize that 
damping mechanism and water compressibility are two issues significantly affecting nonlinear design 
of concrete dams. These factors need to be properly addressed in dam design practices when general-
purpose programs such as ABAQUS, ANSYS, ADINA, etc. are employed in a seismic safety analysis. 
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