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SUMMARY: 
This work intends to analyze the influence of the physical non-linearity of the plastic hinges in the seismic 
behaviour of bridges with piers of different lengths having the same cross- section and reinforcement. A plastic 
hinge model for design purposes was developed. The results indicate that the Eurocode hypothesis to neglect the 
post-yielding stiffness may fail to correctly limit the allowed behaviour factor due to the associated demanded 
ductility. The Eurocode doesn't efficiently take into account the effect of the piers being designed for stress 
values greater than the ones resulting from the design spectrum analysis. Although it's never against safety, this 
means that ductility demands on those piers will be considered higher than the real situation. In the end, this 
work presents a relation which allows the results of a non-linear analysis be obtained from the results of a design 
spectrum analysis. 
 
Keywords: bridge, plastic hinge, hardening, behaviour factor, demanded ductility 
 
 
1. INTRODUCTION 
 
In high seismicity areas, like Portugal, bridge's piers are frequently designed mainly to withstand 
strong seismic action. Since strong earthquakes frequently lead to extended damages, forcing the 
structure to exploit its plastic reserves, it is important to properly study and model the influence of the 
physic non-linearity of the structural elements. 
 
This work approaches particularly the study of plastic hinges, specifically their non-linear effects, in 
the longitudinal analysis of reinforced concrete bridges. Therefore, two methods of analysis will be 
compared to better understand what are the consequences of considering the results of a simpler and 
less accurate model when, compared to one that explicitly considers non-linear effects. 
 
 
2. NON-LINEAR ANALYSIS 
 
The physical non-linearity of the elements will be considered exclusively by concentrating its effects 
in plastic hinges. 
 
The EN 1998-1 (CEN, 2004a) and EN 1998-2 (CEN, 2004b) define the method to calculate the 
parameters of the plastic hinges when a non-linear analysis is intended. These specifications are 
incompatible with the safety requirement methods stipulated by the EN 1992-1-1 (CEN, 2004). This 
happens because the EN 1998-2 (CEN, 2004b) recommends the use of mean values for the properties 
of the materials, while the EN 1992-1-1 (CEN, 2004) recommends design values. 
 
To solve the incongruity between the different codes a variant formulation of the plastic hinge is 
developed, which requires the definition of the constitutive laws for the materials. For the steel was 
assumed the bi-linear law presented in EN 1992- 1-1 3.2.7(2) (CEN, 2004). 



The concrete will be considered having two possible constitutive laws. These are the “Parabola-
Rectangle” presented in the EN 1992-1-1 3.1.7(1) (CEN, 2004) and the constitutive law for non-linear 
analysis, named in this work as “K-η”, presented in the EN 1992-1-1 3.1.5(1) (CEN, 2004). The “K-
η” law can be used with either design or mean values. If design values are used the result of a section 
analysis will be almost equal to the result obtained with the “parabola-rectangle” law. The EN 1992-1-
1 (CEN, 2004) and EN 1998-2 (CEN, 2004b) specify that mean values should be used when 
performing a non-linear dynamic analysis. 
 
2.1. Moment-Curvature Diagram 
 
A simplified bi-linear moment-curvature (M-χ) diagram will be used to model the plastic hinge (Fig. 
1a). The values of the points χy-My and χu-Mu are obtained by the Newton-Raphson method and the 
procedure is thoroughly explained by the author (Arriaga, 2010). 
 
In this work the pair χy-My should be calculated prioritizing the correct modelling of the initial 
stiffness. Therefore, the “K-η” law with mean characteristics will be used to model the concrete 
behaviour. On the other hand, since the maximum bending moment allowed for the section is the 
design moment calculated according to the EN 1992-1-1 (CEN, 2004), the “parabola-rectangle” law 
(with design values) will be used to obtain the pair χu-Mu. Finally for numerical stability reasons there 
will only be considered values for the post-yielding stiffness (EIpc) with positive derivative, with a 
minimum value of 0,01EIII. Also, to avoid inconsistency of data, a value greater than fck will not be 
allowed in the concrete when analysing the yielding point. To ensure these restrictions the stiffness 
EIII will remain constant and the value of My will be reduced to MMaj, as shown in Fig. 1b. 
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 My – Yielding moment 
 Mmaj,fk  – Moment with the concrete stress equal to fck 

 Mmaj,EImin  – Moment to ensure a minimum post-yielding stiffness of 1% of EIII 
 

Figure 1. Simplified M-χ Diagram 
 
2.2. Moment-Rotation Diagram in a Plastic Hinge 
 
The moment-rotation (M-θ) diagram of a plastic hinge was developed to model the physically non-
linear behaviour of a pier element. This diagram is obtained by considering the M-χ diagram for the 
section of the column and its corresponding characteristics. It is therefore necessary to establish a 
plastic hinge length for each pier. Two hinge lengths will then be created, the hinge length for the 
yielding moment Lpy and the hinge length for the failure moment Lpu. The first establishes the 
transition from χy to θy and the second length defines the transition from χu to θu. 
 
2.2.1. Hinge Length for the Yielding Moment 
In common analysis programs, the user considers the uncracked stiffness (EII) in the elements. In 



reality, the elements will crack and the stiffness will be reduced accordingly. The EN 1998-2 (CEN, 
2004b) proposes a corrected stiffness (EIeff) to use in linear analysis that depends on the cracked (EIII) 
and uncracked (EII) stiffness given by: 
 

EIeff = 0,08 EII + EIII (1) 
 
The following reasoning is then applied: what is the hinge length for the yielding moment (Lpy) 
required to simulate the corrected stiffness EIeff in a model constituted by a plastic hinge with initial 
stiffness Kθ and a pier with the uncracked stiffness EII . This is represented in Fig. 2. The displacement 
d represented in Fig. 2 is calculated for the corrected stiffness EIeff. However, this corrected stiffness 
given by equation (1) establishes a fixed relationship between EII and EIII, which is not accurate 
because it should vary with the reduced axial force (ν) affecting the pier in question. Since the value of 
ν should be around 0.2 for a well designed pier, the approximation of the EN 1998-2 may be applied 
without major errors. 
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 (a) – Displacement obtained with stiffness EIeff 
 (b) – Displacement obtained with uncracked stiffness EII plus rotation at its base 

 
Figure 2. Definition of Lpy 

 
The yielding moment's hinge length (Lpy) is defined as a function of L, which is the length between the 
base of the pier and the point of zero moment: 
 

Lpy = αy L (2) 
 
where αy is defined by the following equation (Arriaga, 2010): 
 

αy = 
EIII

3  (
1

 EIeff
 -

1
 EII

 ) (3) 

 
The value of αy depends only of non-dimensional parameters like the reduced axial force ν or the 
reinforcement percentage ρ. This means that it can be used in different cross-sections if they present 
the same non-dimensional characteristics. Assuming some generic cross-sections common in piers of 
bridges, a parametric analysis was made. 
 
On Fig. 3 the value of αref as a function of ν is represented, where αref is the value of αy when ρ = 1%. 
The value of αy can also be related to the value of ρ. An analysis was made, and for usual values of 
reinforcement (0,5% � ρ � 1,5%) the expression (4) adjusts fairly well the actual values calculated 
when ν � 0,1 (with an error always inferior to 6% in the rectangular cross-section and 3% for others). 
 

αy (ρ,ν) = α(ν)ref  [1 + (1 − ρ) (Α + νΒ)] (4) 
 
where A and B are obtained from Table 2.1 and α(ν)ref is the value of αref acquired from the graphic of 
Fig. 3. The value of ρ must be expressed in percentage. 
 
The parameter αy (ρ,ν) never exceeds the value of 0,1714, which is lower than 1/3 as established by 
the EN 1998-2. On the other hand, it wasn't possible to use the EN 1998-2 proposal for the bi-



linearization of the M-χ diagram, which means that even though the stiffness hypothesis are similar, 
the value for αy here proposed cannot be directly compared with the one the EN 1998-2 suggests. 
 
 Table 2.1. Cross-section parameters A and B to calculate αy (ρ,ν) 

Cross-Section A B 
Rectangular 0,36 0,04 
Circular 0,12 0,10 
Square 0,12 0,10 
I Cross-Section 0,14 0,10 
Hollow Rectangular 0,02 0,12 

  
The yield rotation of the plastic hinge will be calculated according to the following expression: 
 

θy = χy Lpy = χy L αy  (5) 
 

 
Figure 3. Value of αref as a function of ν for several cross-section types 

 
 
2.2.2. Hinge Length for the Failure Moment 
The length of the plastic hinge for the failure moment is used according to the following expressions: 
 

θu = θy + θp,d (6) 
 
with θp,d defined by: 
 

θp,d = 
θp,u

γR,p
  (7) 

 
where, according to the EN 1998-2, γR,p = 1,4 and θp,u is given by: 
 

θp,u = (χu – χy) Lp (1 - 
Lp

2L) (8) 

 
The definition of Lp is shown by the following equation: 
 

Lp = 0,10 Lp + 0,015fykdbL (9) 
 
where fyk is the characteristic yield stress for the longitudinal bars (in MPa) and dbL is their diameter 
(in m). This equation is only valid for piers with a shear span ratio L/d � 3,0. 
 
 
3. NUMERICAL MODEL 
 
A computer program was developed to analyse two dimensional structures with a plastic hinge model. 



A non-linear spring element was developed to simulate the non-linear behaviour of the plastic hinge. It 
was considered as a bi-linear behaviour defined with tree parameters. These parameters are the elastic 
stiffness Kl, the post-yielding stiffness Kpc and the yielding moment My. The parameter θu, which 
refers to the failure rotation, was defined as a stopping criterion. 
 
The procedure for the definition of the plastic hinge's stiffness in each instant is presented in Arriaga 
(2010). Basically, the procedure begins by defining the positive and negative yield boundaries (Fy(θ) 
and -Fy (θ - θy)) where: 
 

Fy(θ) = My + (θ - θy) Kpc (10) 
 
It is common in bridges to use sliding bearings to isolate longitudinally the piers from the deck. The 
model of the sliding bearing will be a horizontal non-linear spring with a yielding force Fy = FFriction. 
The value for FFriction is obtained by the following equation: 
 

FFriction = N µa (11) 
 
where N corresponds to the axial force on the pier and µa is the friction coefficient associated to the 
sliding bearing. To simulate the frictional system the spring properties should be Kl = � and Kpc = 0. 
To avoid numerical problems, Kl will be taken as the pier stiffness in elastic regimen (thus replacing 
the pier itself) and Kpc will take a very low value, generally 0,5% of Kl. 
 
 
4. SEISMIC ANALYSIS OF A TWO PIER FRAME 
 
Consider the one bay frame represented in Fig. 4. The two piers are named pier one (on the left) and 
pier two (on the right). The beam is rigid, with mass M and its connection to the piers is pinned. The 
length of the pier 2 (L2) is always grater than the length of the pier 1 (L1) and their quotient is 
represented by β (β = L2/L1). 
 

 
Figure 4. Two pier frame 

 
Two analysis were made, one considering a set of ten earthquakes and the non-linear response of the 
structure, and other based on an elastic response spectrum obtained as the average of the spectra of the 
ten earthquakes considered in the first analysis. Therefore the following variables will be considered 
for the base of the piers: 
 
 Mi,el - Elastic bending moment in pier i. 
 Mi,NL - Maximum bending moment that the pier i is subject to, during the non-linear step-by-step 

analysis. 
 Mi,Ed - Maximum bending moment in pier i, obtained by the elastic spectrum analysis, affected 

by a behaviour factor q. 
 
Pier 1 has always grater internal forces than pier 2, hence the variables x (ductility coefficient in force) 
and q (behaviour factor) will be defined as following: 
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x = 
M1,el

M1,y
 (12) 

 

q = 
M1,el

M1,Ed
 (13) 

 
To include the influence of the section hardening, the parameter k will be defined as the ratio between 
the post-yield stiffness (Kθ,pc) and the linear stiffness (Kθ,l), as presented in the following equation: 
 

k = 
Kθ,pc

Kθ,l
 (14) 

 
The cross-sections and reinforcements of both piers were considered identical, defined by the 
characteristics of pier 1, resulting in the same values for k, My and Mu. Several models were analysed 
considering all the combinations presented in Table 4.1, where T is the period of the structure 
controlled through the mass of the beam (M). 
 
 Table 4.1. Parameter values used in the analysis 

k 0,01 0,30    
x 2,0 2,5 3,0   
T (s) 0,25 0,5 1,0 1,5 2,0 
β 1,00 1,25 1,50 1,75  

  
4.1. Design Bending Moment in Pier 2 
 
The design bending moments in the piers of a bridge are obtained through the response spectrum 
affected by a behaviour factor assuming an elastic distribution along the piers. This only corresponds 
to the real distribution of moments when the piers have been designed to have they're resistant 
moments equal to the ones obtained by the analysis. 
 
In this work is made the hypothesis that all the piers have the same yielding and resistant moments, 
either for constructive of for regulatory reasons, which means that the distribution of moments 
obtained by the response spectrum won't correspond to the real distribution. 
 
On Fig. 5 the quotient of M2,NL/M2,Ed for pier 2 as a function of the behaviour factor calculated for that 
structure through equation (13) is represented. The graphics are drawn for two different values of x. 
 
Also represented on Fig. 5 is the normalized yielding moment in pier 2 (M2,y/M2,Ed), given by the 
equation: 
 

M2,y

M2,Ed
 = 

β2

x  q (15) 

 
where the variables β, x and q were already defined. 
 
Consequently, from Fig. 5 one may calculate the value of the real bending moment considering the 
non-linear behaviour. This is done by using the result of the response spectrum analysis multiplied by 
a value extracted from the graphics displayed in this figure. 
 
The first consideration to be made is that the normalised moment (on the ordinate) presents a different 
behaviour whether it is above or below the yielding moment line (represented by a dotted line). If the 
moment is above the yielding moment, then it is mildly increasing. If the moment is below to the 
dotted line, then it will decrease rapidly. It is also visible that when the value of x is fixed, the 
maximum value of q will be strongly limited by the value of k. This implies that a plastic hinge with a 



higher value of k (greater hardening) will require a higher value of x to guarantee the same value of q. 
 

       

 (a) (b) 

Figure 5. Normalised moment in pier 2 as a function of q, for x=2 (a) and for x=3 (b). 
  
Since the value of M2,NL is strongly related to the value of M2,y, a greater value of k implies a smaller 
value of M2,NL. This happens because of the restriction on the behavior factor (q) given by the 
parameter k. 
 
4.2. Demanded Ductility 
 
The discrepancy between the values of q and x are particularly relevant when evaluating the 
“demanded ductility" (Costa, 1990) of a pier. This parameter is defined by the ratio between the 
displacement of the non-linear analysis (dt) and the yielding displacement (dy). On Fig. 7 this 
parameter is represented as a function of the period of the structure, for the pier 1, since this is the pier 
with the greatest ductility demand. 
 

 
Figure 6. Demanded ductility in pier 1 as a function of T. 

 
By observing the Fig. 6 it's easy to conclude that, for values of period greater than 1 second, the 
ductility demand is lower than x. It is also possible to observe that the ductility demand is significantly 
higher for greater values of x. The value of k only affects this parameter directly by reducing its 
dependence from the value of β. Nevertheless, since a higher value of k implies a higher value of x for 
the same q, k is indirectly a very strong influence on the ductility demand. 
 
4.3. Pier Top Design Displacement 
 
As in section 4.1, the values obtained from the step-by-step analysis and the response spectrum 
analysis will be compared, but in this case regarding the displacement of the top of the piers (dt and del 
respectively). On Fig. 7 these two variables are compared for k = 0,01 and 0,30.  



  

 (a) (b) 

Figure 7. Normalised displacement for k=0,01 (a) and for k=0,30 (b). 
 
It is observable from figure 7 that the conclusions taken from the section 4.2 regarding the value of k 
still apply. It was said that a greater value of k reduces the importance of β for the response and limits 
the value of q. From Fig. 7 it's easy to observe that small values of period imply displacements greater 
than the elastic, and values above the limit of 1.25TC, established by the EN 1998-2, are inferior to the 
elastic displacement. This is taken into account by the EN 1998-2 in 2.3.6.1(6)P where, for periods 
inferior to 1.25TC the displacement is amplified by a ductility factor and for the remaining periods the 
displacement is equal to the elastic displacement (Arriaga, 2010). 
 
Finally, for high values of k and T, the hypothesis of the EN 1998-2 can be excessively conservative 
resulting in design displacements much higher than the actual displacements. A reduction of the 
displacement should be considered since it is in the high-period structures that the displacement is 
higher and more important for design purposes. 
 
4.4. High-Period Analysis 
 
The response of a high-period structure calculated with the acceleration response spectrum won't be 
accurate due to the relationship established between the acceleration and the displacement spectra. 
This is why the elastic response of high-period structure will be calculated by step- by-step analysis. 
 
On Fig. 8 the beam displacement obtained from a non-linear step-by-step analysis normalised with the 
elastic displacement is represented. The structure considered has a hardening factor k = 0,01, a 
ductility coefficient in force x = 2 and a relation of piers β = 1. Additionally, the period of the structure 
will go from 0,25 to 5 seconds. As observed in the Fig. 8 the displacement tends to the elastic 
displacement when the period (T) of the structure increases. It is also observable that the 
displacements are lower than the elastic displacement when T �T0, confirming the hypothesis of the 
EN 1998-2, which considers them equal to the elastic displacement as a conservative position. These 
observations were verified in all structures with k = 0,01. 

 
 

Figure 8. Normalised displacement as a function of T (k=0,01; x=2; β=1) 



Since that, for high-period structures, the displacement is approximately equal to elastic displacement, 
a relationship can be established between the behaviour factor (q) and the ductility in force coefficient 
(x), give by the following equation: 
 

q = 
x

1 + (x - 1) k (16) 

 
This expression was compared to the results obtained for the behaviour factor from the analysis of the 
high-period structures and presented an error of about 2%. 
 
 
5. CASE STUDY OF A REAL BRIDGE 
 
Using the bridge model presented in Fig. 9, two analyses were made, an elastic analysis by response 
spectrum and a time non-linear analysis. The parameters of each pier were calculated according to the 
methods described earlier, resulting in the parameters presented on Table 3 (Arriaga, 2010). 
 

Figure 9. Bridge Model 
 
 Table 5.1. Parameters of the piers and respective plastic hinges 

 P1/P7 P2/P6 P3/P5 P4 
q (q’) 1,81 (1,88) 

x 1,93 
Lp (m) 20 25 30 35 

βp 1 1,25 1,5 1,75 
  
On Fig. 10 the bending moments calculated in each pier are represented, one set for the elastic analysis 
with the design spectrum and other for the non-linear step-by-step analysis. As observed, the 
behaviour factor q considered on the analysis was such that the values of the bending moment in both 
piers 1 and 7 were the same. The parameters in Table 5.1 were used to calculate, for each pier, a 
correction factor based on the results presented on Fig. 5. This correction factor, Mp,NL/Mp,Ed, attempts 
to modify the values of the response spectrum analysis so that the values of the bending moments 
become closer to the real response, as if calculated by a non-linear analysis. 

 
Figure 10. Comparison of the bending moments obtained with different methodologies 
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Although the results on Fig. 5 were obtained for a two pier structure, it is very clear from the results 
presented in the Fig. 10 that the corrected values also give good results on a multi-pier structure. 
 
 
6. CONCLUSIONS 
 
One of the plastic hinge's characteristics was its αy value. For the usual types of bridge cross-sections, 
if ν � 0,4, the αy parameter varies in a short range of values, between 0,10 and 0,17, and is in most 
cases greater than 0,14. The analysis of this variable enables a better knowledge of the quotient 
EIeff/EII, which will be between 20% and 40% when ν � 0,1. It was also observed that the value of ρ 
doesn't affect strongly the value of αy and consequently the value of EIeff/EII. 
 
If the hardening factor (k) of a plastic hinge increases then the ductility in force factor (x) also 
increases, keeping the behaviour factor (q) constant. The demanded ductility, given by dt/dy, increases 
for x larger values. Consequently, the value of the behaviour factor should be more restricted in cross-
sections that imply a considerable hardening factor like the circular cross-section. 
 
Comparing two elements, the first with a high hardening value (k = 0,3) and the second with a low 
hardening value (k = 0,01), it was observed that an increase of 25% in the value of q could imply an 
increase of 35% in the demanded ductility for the first case and only 11% for the second. 
Also, a higher value of k implies a reduced displacement, where this effect is most relevant for low 
values of period. 
 
It was made clear that the increase in bending moment on a cross-section due to non-linear effects will 
never be enough to put in danger the safety of that element. Also, the safety margin will increase if β, 
x or k increase. The value of q will not interfere in the safety margin because it will only translate the 
effect of the period of the structure. 
 
If period is greater than 2s, then the displacement will be approximately equal to the elastic 
displacement. This implies a correlation between x, q and k that allows an estimate of the maximum 
behavior factor (q) that is possible for a set of k and x. 
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