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SUMMARY 

The paper proposes a simplified procedure for the seismic vulnerability analysis of girder bridges with simply 

supported decks and single-circular piers. The proposed method can be applied in all the cases for which the 

seismic response of the whole bridge depends from the most critical pier. For an assigned limit state, the 

procedure determines the capacity curve of the critical pier as a function of 3 parameters (elastic stiffness, 

displacement at yielding, displacement at collapse), taking into account the different possible collapse modes 

(shear failure; lap splice debonding of the longitudinal bars; buckling) and the geometric non linearity. A N2-like 

procedure is then applied in order to identify the “Capacity Return Period”, which represents the performance 

level, to be compared with the design spectrum. A significant numerical example is presented in which the 

traditional FEM solution is compared with the proposed simplified procedure.  
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1. INTRODUCTION 

 

In seismic prone areas, the seismic risk assessment of strategic buildings and infrastructures is a 

crucial question. A particularly relevant category is represented by bridges, to which a great attention 

has been devoted in the last few years, in order to perform the vulnerability inventory at the regional 

scale and possibly obtain priority lists and preliminary indications for the retrofitting interventions. To 

this aim, many research studies have been devoted to the definition of “damage indexes” or “indexes 

of criticality” (Wen-I Liao and Ching, 2004; Mezzina and Raffaele, 2007). The safety assessment of 

existing bridges is based on the appraisal of the dissipative capacity of the structure and its actual 

available ductility by means of suitable non linear methods of analysis. A very effective method, if 

applicable, is the pushover analysis (PO). The theoretical foundation of this procedure, which uses 

static structural analysis for appraising the non linear behaviour under seismic loads, is dated back to 

more than thirty years ago (Freeman et al., 1975; Fajfar and Fischinger, 1988). Since then, the method 

has been extensively developed, so that today many variants exist, which are characterized by a 

greater accuracy, but also by greater complexity (Antoniou and Pinho, 1996; Chopra and Goel, 2002; 

Fajfar and Gaspersic, 2004). Anyway, it should be noticed than most of these studies are aimed at the 

analysis of buildings, while specific procedures for the assessment of existing bridges are relatively 

few (Isakovic and Fischinger, 2006; Kappos et al., 2006). In this field, research has been mostly 

oriented at the development of the multi-modal and adaptive extensions of PO methods, which are 

very interesting, but unfortunately are computationally very expensive. In the last few years, an 

increasing attention has been devoted to simplified PO procedures in which the capacity curve of RC 

structures is calculated only by defining the position of some characteristic points, and without 

performing any analysis of thrust (Borzi et al. 2007; Crowley et al. 2004). In these approaches, the 

non-linear properties of the structure are modelled by introducing equivalent systems - usually a single 

degree of freedom system – which corresponds to the original structure in terms of vibration period, 

energy dissipation and displacement capacity (Pinto et al., 2007). The fundamental objective is to 

assess the seismic vulnerability of building by relying only on poor data that can be easily retrieved 

even by a limited preliminary investigation, without the need to perform a detailed protocol of 

investigation aimed at the complete geometric and mechanical characterization of the structure. 



The research study presented in the paper is referred to this theoretical framework, and proposes a 

simplified procedure to define the capacity curve of existing bridges, expressed by Moment-

displacement relationship M-δ, taking into account the different failure modes that can possibly affect 

the structural ductility. The capacity curve is defined starting from the Moment-Curvature response 

(M-χ) of the base section for an equivalent SDoF system. Strength and ductility (in terms of 

displacement) are then properly modified in order to account for a possible early collapse triggered by 

one of the following collapse mechanisms: i. inadequate overlapping length of the longitudinal bars; ii. 

buckling of the longitudinal bars, iii. shear. The ultimate shape of the capacity curve is finally 

determined by evaluating the further loss of strength related to the II order effects induced by 

geometric nonlinearity. The research study has been developed for the analysis of vulnerability of RC 

girder bridges with simply supported deck and single-column piers with solid circular section, which 

were very popular in Italy in the 70’s. Anyway, the methodology can be easily extended to the case of 

piers having different types of section. In the paper, after outlining the sequential steps of the 

procedure, a numerical validation is presented on a representative example, comparing the proposed 

simplified response under combined axial stress and bending (which is the basis of the entire 

procedure) with a more refined non linear FEM pushover analysis. 

 

 

2. REFERENCE FRAMEWORK OF THE PROCEDURE 

 

For bridges with simply supported decks and single-columns piers it is possible to define simplified 

approaches for the structural vulnerability assessment as an alternative to more accurate methods 

(Pinto et al., 2007). In this type of bridges, in fact, the deck is not significantly involved in the seismic 

response and thence the global behaviour of the structure under seismic loads is determined by the 

supporting structures (piers). In particular, the vulnerability of the deck is strongly dependent on the 

behaviour of the “critical” pier, which is defined as the pier characterized by the lowest value of the 

Seismic Vulnerability Coefficient CVS=δCSL/δ
D
SL (where δCSL, δ

D
SL respectively are the displacement 

“Capacity” and “Demand” of the structure for the Limit State assumed for the assessment), both in the 

trasversal and in the longitudinal direction (Mezzina et al., 2010). It should be remarked that if the 

retrofitting interventions programmed provide a substantial modification of the static scheme (for 

example a solidarization of the deck, or its complete replacement with a continuous deck), the afore-

mentioned assumptions for the simplified vulnerability analysis cannot be applied.  

In order to evaluate the deformation capacity of the structure beyond the elastic limit, it is fundamental 

to determine the capacity curve of the structure, which is usually obtained by the application of non-

linear static procedures (PO). In view of vulnerability analyses at a regional scale, involving a large 

number of structures, the availability of simplified and rapid approaches to be used as an alternative to 

the full non linear procedures, is particularly useful. In a simplified approach, the capacity curve 

expressed in terms of the Force-displacement relationship F-δ (or equivalently, the Moment-

displacement relationship M-δ), can be represented by a bi-linear function (Fig. 2.1.), that is 

completely known once the two points A and B are identified.  
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Figure 2.1. The simplified bi-linear representation of the F-δ relationship  

 

The pair of coordinates A(Fy - δy) and B(Fu - δu) characterize the structure, respectively, at the elastic 

limit state and at the ultimate limit state (Pinto et al., 2009[2]). The reference model is an equivalent 



Single degree of Freedom system (SDoF, Fig. 2.2. right). In the transversal direction to the axis of the 

bridge (“T”), each pier behaves as a simple oscillator. In the longitudinal direction (“L”), in the 

presence of seismic bearings (the so called “fixed” pier), the pier can also be model by a SDoF 

scheme, in which the mass is given by the reactions of the supported decks.  

 

 
 

Fig. 2.2. The equivalent SDoF schematization. 

 

Thence, there are two distinct simplified models: one in the transversal direction, having a mass MT 

and height HT, another in the longitudinal direction, having a mass ML and height HL (Fig. 2.2). 

Depending on the direction of the analysis, the centers of application of the masses have different 

heights. The masses of the two models can be calculated by means of the following expressions: 

 

   (2.2) 

 

where WI, WP, WF respectively are the weight of the deck, of the pulvino and of the pier; g is the 

gravitational acceleration; nT and nL are the number of spans loading the pier in the transversal and 

longitudinal direction, as a function of the constraint type. The height of the centers of the masses MT 

and ML, measured from the base section of the pier, are given by: 

 

 (2.3) 

 

where: HF, HP, HI  are the heights of the pier, of the pulvino and of the deck (see Fig.2.2); ∆OP is the 

overall height of the pulvino-bearing device (measured from the top section of the pier). In order to 

simplify the procedure and reduce the parameters involved, in the proposed procedure the interaction 

between the super-structure and the foundation structures is neglected, and the piers are supposed to be 

fully clamped at the base.  

 

 

3. COLLAPSE MODES 

 

In existing bridges, which are mostly characterized by an unsatisfactory level of the technical design 

(mainly because the reference building codes are very obsolete), piers often reveal a number of critical 

states such as: poor confinement at the base; inadequate amount of longitudinal reinforcements 

(sometimes a brittle behaviour of the section is engaged). A number of experimental studies carried 

out in this field (Calvi et al. 2005), and in particular concerning single-column piers with circular 

section (Albanesi et al., 2008), have shown that the crisis can be triggered by different mechanisms, 

according to the value of the significant structural parameters (height of the pier, diameter of the pier’s 

section, amount of longitudinal and transversal reinforcements, …). The variation of even one of these 

parameters can change the actual type of failure mechanism, and it is nearly impossible to predict 

which of these occurs at the limit state, and thence it is difficult to evaluate the capacity curve (points 



A and B in Fig. 2.1). Thus, it becomes important to quantify with a good approximation the effects 

induced by each possible collapse mechanism, in order to determine the variations on the response of 

the pier in terms of strength (force or moment) and deformation capacity (displacement or ductility). 

Different failure modes are taken into account and for each of them, a procedure for properly 

correcting the capacity curve, as obtained by the basic analysis of the critical section (base section) 

under bending and normal stress, is defined. The analysis is performed with reference to the base 

section, because the non linear zone is assumed to be located here (fully clamped constraint), in the 

tract of length LP (usually referred to as "length of the plastic hinge"). The collapse modes included in 

the procedure are:  

a) Failure under combined axial stress and bending, in the presence of effective confinement, χ=χU 

(§ 3.1); 

b) Lap-splice failure of longitudinal bars (§ 3.2); 

c) Buckling of longitudinal bars (§ 3.3); 

d) Shear (§ 3.4). 

Whenever the failure under combined axial stress and bending is anticipated by one of the 

mechanisms listed at the points b), c) e d), and the final capacity curve is correspondingly modified. 

 

3.1. Failure under combined axial stress and bending 

 

As previously remarked, in the simplified model of Fig. 2.2, the capacity curve M-δ is defined starting 

from the moment-curvature relationship (M-χ) of the critical section, which is located at the base of 

the pier, within the tract of length LP. The first simplification assumed in the proposed procedure 

consists in the transformation of the M-χ relationship calculated at the level of the section (red line in 

Fig 3.1a), in an elastic-perfectly plastic law (My=Mu) (black dotted line). In order to identify the 

characteristic points of the moment-curvature curve of the critical section, that is to say the curvatures 

χy and χu and the ultimate moment Mu, the following geometrical and mechanical parameter should be 

first determined: i. longitudinal reinforcement area (As); ii. confinement level, expressed as the 

geometric volumetric percentage of the transverse reinforcement (ρs); iii. compressive strength of 

concrete (fc); iv. yield strength of the steel fy; v. compressive normal stress acting on the N-th pier. The 

values fc and fy are to intended as average values of the results provided by experimental in-situ tests, 

or derived by existing information, divided by the "Partial Safety Factor" (PSF) corresponding to the 

"Knowledge level" (KL) attained (CEN, 2005 [1]). 
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Fig. 3.1a. M-χ relationship (of the critical section. 3.1b. Capacity curve of the SDoF oscillator. 

 

For circular sections, when the M-χ  law can be expressed by means of a bilinear relationship, 

Priestley (Priestley MJN, 2003) proposes a numerical expression in which the curvature at yielding 

(χy) is independent from the above mentioned parameters, and is only a function of the strain at 

yielding of the steel (εsy) and of the diameter D of the pier section. Consequently, the capacity at 

yielding in terms of chord rotation (θy) can be obtained by a purely elastic analysis under bending that, 

in the specific case, corresponds to a perfectly elastic behaviour of the pier up until the yielding 

moment My is attained: 



      (3.1) 

 

where δy is the displacement of the top section and LV is the shear length (= M/F).  

The capacity at collapse can be expressed instead by the relationship proposed by Panagiotakos (CEN, 

2005[1], Panagiotakos & Fardis, 2001), in which a quote of plastic rotation at the critical base section 

is added to the yielding rotation: 

 

     (3.2) 

 

The only unknown term in eqn. 3.2 is the ultimate curvature χu, which can be derived by assuming a 

strain distribution associated to the collapse of the section, involving the failure of the concrete in 

compression and the yielding of the steel under tension. Although this approach, based on the 

evaluation of chord rotations, is quite simple and easy, there is the problem of defining the length of 

the plastic hinge (LP), which is not so immediate, since it strongly depends on the constitutive laws of 

the materials, the load type, the geometry of the transversal section, the shear stress. Several 

formulations can be found in the literature, (Priestley & Park, 1987; Fardis, 2007) that can be all 

equivalently used within the proposed methodology. In the numerical application presented in Section 

5 the relationship contained in Eurocode 2 has been adopted (CEN, 2005[2]): 

 

       (3.3) 

 

where dbL is the diameter of the longitudinal bars. 

The displacement capacities δSLD, δSLV and δSLC corresponding, respectively, to the Damage Limit State 

(SLD) and the Ultimate Limit State (which are respectively represented by the Limit State of Life 

Safety - SLV and Near Collapse - SLC), according to the indications of the Italian Seismic Code 

(D.M. 14/01/2008), can be evaluated as δSLD = δy, δSLV = 3/4δSLC and δSLC = δu/γel, with γel = 1.5 for 

primary structural elements and γel = 1.0 for secondary structural elements (Fig. 3.1b). For the 

calculation of the ultimate moment, a numerical formulation in a closed form is proposed (Eqn. 3.4), 

depending on the following parameters: i. ν = axial force normalised to Ac*fcd; ii.  ω =  mechanical 

ratio of tension longitudinal reinforcement; iii. ρs; iv. fc; v. fy. The range of variation considered for the 

above mentioned quantities are: 0.1<ν <0.6; 0.05<ω<0.6; 0.0000475<ρs<0.000285; 

15MPa<fc<45MPa; 300MPa<fy<405MPa.   

 

  (3.4) 

 

where a, b, c, d, e, and f are the numerical constants of the II order regression, whereas g, h, i, l, m, and 

n are the numerical constants of the linear regression. 

 

3.2 Lap-splice failure of longitudinal bars 

 

An effective model for appraising the flexural strength of the pier in the presence of longitudinal bars 

joined by overlapping, which is also supported by several experimental results, has been proposed by 

Priestley et al. (Priestley et al., 1996). In the presence of confinement, when lap-splice failure occurs 

(ρs<ρh), the model introduces a degradation of the flexural strength (∆M) given by the difference of 

the ultimate Moment Mu corresponding to an optimum level of confinement ρh (see Eqn. 3.5) and a 

reduced moment M* (this is obtained by interpolation between a minimum value M0, corresponding to 

ρs=0 and Mu): 

 



   (3.5) 

 

LS is the length of overlapping of the bars, fyk is the characteristic resistance of the steel, fsh is the 

maximum tension applied by the transversal reinforcements (which is assumed to be equal to 200 

MPa). By applying the above described model, within the proposed procedure, in the presence of lap-

splice failure, the capacity curve derived in § 3.1 is reduced by a quantity equal to ∆M (Fig. 10). 
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Fig. 3.2. Modification of the flexural capacity curve according to the possible lap-splice failure. 

 

3.3 Failure for buckling of longitudinal rebars  

 

The effects due to the possible buckling of longitudinal bars are evaluated by using the empirical 

model proposed by Berry & Eberhard (Berry and Eberhard, 2005). The model is based on the 

assumption that the instability involves only a reduction of the hysteresis loops and a decrease of the 

displacement capacity of the structural element. Starting by this assumption, the authors proposed a 

numerical relationship for the assessment of the ultimate displacement in the presence of instability, 

δbb, which was calibrated on the basis of a hundreds of tests.  

 

   (3.6) 

 

In the proposed procedure, the effects of the buckling are taken into account by reducing the 

displacement capacity of the SDoF system, after checking the value of δbb against the available 

displacement corresponding to the different limit states assumed in the verification, i.e. LS and NC 

(see Fig. 3.3).  
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Fig. 3.3. Modification of the capacity curve in order to account for the buckling of longitudinal bars.  



 

3.4 Shear collapse  

 

An effective model of the shear mechanism for circular sections, that provides a good feedback with 

experimental results, was proposed by Priestley et al. (Priestley et al., 1998). In the model, the shear 

strength VU of the RC elements under combined axial stress and bending is defined as the sum of three 

contributions: i. VN = horizontal component of the axial force N acting on the concrete strut; ii. VST = 

contribution of the transversal reinforcement; iii. VC = contribution related to the aggregate 

interlocking effect. The shear collapse determines a significant reduction of the deformation capacity, 

and therefore of the displacement ductility of the structural element. On the basis of these 

observations, it can be concluded that there are four possible configurations that can be represented in 

the M-δ plane, as summarized in Fig. 3.4, showing the reduction of the displacements at the different 

limit states. The blue line corresponds to the reduced capacity curve, whereas the curve of the shear 

resistance is plotted in red.  
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Fig. 3.4. The modification of the flexural capacity curve in the presence of a shear failure of the pier. 

 

 

4. APPRAISAL OF II ORDER EFFECTS  

 

By referring to the SDoF system, II order effects can be considered as equivalent to a reduction of the 

resistance of the critical section. Once the capacity curve of the pier has been derived by following the 

procedure outlined § 3 (by applying the necessary modifications), it is finally possible to evaluate the 

reduction of the strength capacity MU induced by II order effects as a function of the displacement 

δ (Fig. 4.1): ∆MSL
II
 = N*δSL (δSL is the displacement associated to the specific limit state).  

The ductility µSL= δU/δY varies from a minimum value of 1 (for the damage limit state SLD) to a 

maximum value corresponding to the limit state of near collapse (SLC). 
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Fig. 4.1. Modification of the capacity curve under II order effects, for the different limit states. 

 

 



5. SYNOPSIS OF THE PROCEDURE 

 

The whole procedure is summarized in Tab. 4.1, starting from the definition of the initial capacity 

curve and indicating the sequential steps in which the capacity of the section is “corrected” by 

considering the possible additional collapse modes.  

 
Tab. 5.1. Synopsis of the proposed procedure. 

Step / § Collapse Mode/Effects Modification 

0 - §2-3.1 
Combined normal stress and 

bending 
Linearization of the M-χ curve 

1 - §3.2 Lap-splice failure of long. bars. Reduction of the resistance by ∆M=Mu-M*  

2 - §3.3 Buckling of long. bars 
Comparison between δSL and δbb and correspondent reduction 

of the available displacement capacity  

3 - §3.4 Shear 
Comparison between δSL and δV and correspondent reduction of 

the available displacement capacity  

4 - §4 Geometric non linearity Reduction of the resistance by  ∆MSL
II
 = N*δSL  

 

 

6. STEP “0”: NUMERICAL APPLICATION 

 

As already remarked in § 2 and § 3.1, the entire proposed procedure is based on a simplified sectional 

analysis consisting in the linearization of the M-δ  curve (determination of the two characteristic points 

corresponding to the yielding and collapse - step "0" in Tab. 4.1). Considering the importance of the 

first step for the subsequent development of the procedure, a preliminary numerical validation of the 

sectional analysis has been performed. The response of a circular section subjected to bending has 

been determined according to the procedure described in § 3.1 and then compared with the results of a 

FEM pushover analysis (based on fiber model) performed by using software SAP2000 V14.2.2 

(Computer & Structures, 2010). The pier has been modelled by means of 12 beam elements, 

discretizing the cross section into 52 fibers. With regard to the constitutive aspects, law of for the 

concrete, the relationship shown in Fig. 6.1, proposed by Mander, Priestley e Park (Mander et al., 

1988) has been adopted, whereas for the steel an elastic-plastic law with hardening has been used. In 

Tab. 6.1 the geometric and mechanical parameters of the pier analyzed are summarized (symbols are 

the same used in previous sections).  

 
Tab. 6.1. The characteristic parameters of the pier analyzed for the numerical validation 

Materials Geometry Self weight Reinforcement 

fc [MPa] 20 Hf [m] 6 WI [t] 800 φbl [cm] 2.6 

fs [MPa] 450 ∆P [m] 0.8 WP [t] 140 φst [cm] 1.0 

γc [kg/mc] 2500 ∆I [m] 3.2 nT 1.5 ω 0.137 

εsy 0.002 ∆OP [m] 1.7 nL 2 ρs 0.0035 

εsu 0.038 D [m] 2   Stress 

εcu 0.013 c [m] 0.05   ν 0.157 

 

The pushover analysis under a load distribution proportional to the first vibration mode has been 

performed, and in Fig. 6.1 the resulting capacity curves, representing the structural response of the pier 

under combined normal stress and bending are reported. In particular, the curve obtained with the 

FEM analysis by the solver SAP (dashed blue line) has been transformed into the equivalent bilinear 

curve (solid blue line), by assuming that the elastic branch ended up with the yielding of the first 

longitudinal bar and that the peak resistance was 85% of the maximum moment. The criterion adopted 

is coherent with the principle of the energy equivalence between the areas under the two curves.  

 



  
 

Fig. 6.1. Capacity curves and constitutive law of concrete 

 

From a simple graphic comparison, it can be clearly seen that the approximate procedure, that will be 

thereafter referred to as "VulPil_CC", is very close to the numerical solution provided by the FE 

model. A more detailed comparison is presented in Tab. 6.2, in terms of ultimate moment MU, ultimate 

displacement δU δ and PGA (Peak Ground Acceleration) corresponding to the Near Collapse limit 

state. It can be seen that the differences are always below 7% and can therefore be considered fully 

satisfactory for a validation of the foundation of the proposed simplified procedure. 

 
Tab. 6.2. Proposed simplified procedure VS numerical FEM analysis: comparative table of the results  

 MU δδδδU PGA_SLC 

 [t*m] ∆ [ % ] [cm] ∆ [ % ]  ∆ [ % ] 

VulPil_CC 1308.15 - 6.95 6.87 + 4.62 0.454g - 3.40 

SAP V14_BL 1405.82 / 6.57 / 0.470g  

 

 

7. FINAL REMARKS 

 

In the last few years, the need to develop effective and manageable procedures for performing the 

vulnerability inventory of strategic infrastructures at a regional scale, and obtaining priority lists for 

the intervention, has become increasingly urgent. In this paper, a simplified procedure (which resorts 

to poor data that can be easily obtained) aimed at the seismic vulnerability assessment of girder 

bridges with simply supported decks and single-circular RC piers is proposed. The main 

approximation of the procedure consists in the evaluation of the M-δ relationship for the critical pier 

under combined normal stress and bending. Thence, after describing the theoretical formulation of the 

whole procedure, which includes the modification of the capacity curves in order to account for 

possible additional collapse modes, a comparative numerical analysis between the main approximation 

proposed and a non-linear FEM analysis (based on a traditional fiber model) has been carried out. The 

differences found are negligible, especially considering that the input data of the simplified procedure 

are very few.  
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