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SUMMARY: 

The MSRS rule is a response spectrum method for analysis of multiply supported structures subjected to 

spatially varying ground motions. This paper evaluates the accuracy of the MSRS rule by comparing MSRS 

estimates of mean peak responses with corresponding “exact” mean values obtained by time-history analysis 

with ensembles of simulated support motions. The simulated support motions are realizations of an array of non-

stationary processes with a specified coherency function, generated with a simulation approach developed 

elsewhere by the authors. These sets of motions are characterized by consistent variability at all support points, 

and thus, are appropriate as input for statistical analysis. The structural systems considered are four bridge 

models selected to have vastly different structural characteristics. The responses examined are pier drifts, which 

are quantities particularly important in performance based design of bridges. Results indicate that the MSRS 

method is a reliable analysis tool. 
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1. INTRODUCTION 

 

Response spectrum methods are widely used in engineering practice for linear seismic analysis of 

buildings and bridges. An important advantage of the response spectrum approach over Response 

History Analysis (RHA) is that it provides a statistical characterization of the response, not controlled 

by a particular selection of ground motions. Furthermore, its simple and fast implementation is 

appealing from a design viewpoint and allows extended parametric analysis. For multiply supported 

structures subjected to spatially varying ground motions, Der Kiureghian and Neuenhofer (1992) 

developed the Multiple Support Response Spectrum (MSRS) method based on principles of random 

vibration theory. The present authors have recently generalized and extended this method to allow 

consideration of all response quantities and to account for the pseudo-static contributions of truncated 

modes (Konakli and Der Kiureghian, 2011a). The MSRS rule evaluates the mean peak response in 

terms of the response spectra and mean peak ground displacements at the support points of the 

structure, and the coherency function that characterizes the spatial variability of the support motions. 

The MSRS method has been used by a growing number of researchers (e.g. Loh and Ku, 1995; Kahan 

et al., 1996; Yu and Zhou, 2008) and has been adopted by seismic codes (Eurocode 8, 1998). 

 

As with other response spectrum methods, the MSRS rule involves fundamental assumptions and 

approximations rooted in the theory of stationary random vibrations. These include the assumptions 

that the ground motion is a broadband process with a strong motion duration several times longer than 

the fundamental period of the structure and that the spatial variability of the ground motion random 

field is described by a smooth coherency function. The error encountered by use of MSRS is unknown 

and can be on either conservative or unconservative side. In this paper, errors in the MSRS estimates 

of the mean peak pier drifts of four bridge models are evaluated by comparisons with the respective 

“exact” quantities obtained from linear RHA with statistically consistent inputs. The support 

excitations in the RHA approach are synthetic arrays of spatially varying motions simulated with the 

method developed by Konakli and Der Kiureghian (2012). Comparisons between results from 

consistent MSRS and RHA analysis are performed for ground motion random fields characterized by 



different frequency contents and coherency functions.  

 

 

2. STRUCTURAL RESPONSE TO SPATIALLY VARYING SUPPORT MOTIONS 

 

Consider a lumped mass linear structural model with N unconstrained degrees of freedom (DOF) and 

m support DOF. Let )(tuk  (k=1, ..., m) denote the prescribed support excitations. Assuming classical 

damping, let )(tski  denote the normalized response of mode i (i=1, ..., N)  to the kth support motion, 

obtained as the solution to 

 

)()(ω)(ωζ2)( 2 tutststs kkiikiiiki           (2.1) 

 

where iω  and iζ  respectively denote the corresponding modal frequency and damping ratio of the 

fixed base structure. Neglecting damping forces associated with the support DOF, a generic response 

quantity of interest, z(t), can be expressed in terms of the support motions, )(tuk , and the normalized 

modal responses, )(tski , as follows (Der Kiureghian and Neuenhofer, 1992; Konakli and Der 

Kiureghian, 2011a): 
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In the preceding equation ka  represents the response quantity of interest when the kth support DOF is 

statically displaced by a unit amount with all other support DOF remaining fixed and kib  represents 

the contribution of the ith mode to the response z(t) arising from the excitation at the kth support DOF 

when )(tski  is equal to unity. Coefficients ka  and kib  depend only on the structural properties and 

can be computed by use of any conventional static analysis program (Konakli and Der Kiureghian, 

2011a). The first single-sum term in Eqn. 2.2 is the pseudo-static component of the response, i.e. the 

static response of the system at each time instant when inertia and damping forces are ignored; this 

term is zero in the case of uniform support motions. The second double-sum term is the dynamic 

component of the response, i.e. the response of the structure to the dynamic inertia forces induced by 

the support motions. 

 

Using Eqn. 2.2 and the principles of stationary random vibration theory, Der Kiureghian and 

Neuenhofer  (1992) have shown that, for the case of translational support motions, the mean of the 

peak of the generic response quantity z(t) can be approximately obtained in the form 
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The preceding equation represents the MSRS combination rule. The first, double-sum term inside the 

square brackets is the pseudo-static component of the response, the third, quadruple-sum term is the 

dynamic component, and the second, triple-sum term is a cross term of the pseudo-static and dynamic 

components. The mean of the peak response is given in terms of the structural properties, reflected in 

the coefficients ka  and kib , the mean peak ground displacements, max,ku , the ordinates of the mean 

displacement response spectrum,  iikD ζ,ω , for each support motion and each modal frequency and 



damping ratio, and three sets of cross correlation coefficients: 
lkuuρ , describing the correlation 

between the kth and lth support displacements, 
ljk suρ , describing the correlation between the kth 

support displacement and the response of mode j to the lth support motion, and 
ljki ssρ , describing the 

correlation between the responses of modes i and j to the kth and lth support motions, respectively. 

The coefficients 
lkuuρ  are functions of the auto- and cross-power spectral densities (PSDs) of the 

support motions, whereas the coefficients 
ljk suρ  and 

ljki ssρ  additionally depend on the modal 

frequencies and damping ratios. The cross-PSDs of the support motions are given in terms of the 

corresponding auto-PSDs and the coherency function that models the spatial variability of the ground 

motion random field in the frequency domain. The auto-PSD of each support motion is obtained in 

terms of the specified response spectrum (Der Kiureghian and Neuenhofer, 1992). Thus, the set of 

response spectra for all support DOF (including the limits at infinite period, which equal the respective 

peak ground displacements) and the set of coherency functions for all pairs of support motions 

represent a complete specification of the input ground motions required in the MSRS analysis. 

  

 

3. BRIDGE MODELS  

 

The structural systems considered in this study are idealized models of four real bridges with vastly 

different structural characteristics. The bridges have been designed by the California Department of 

Transportation (Caltrans) and the corresponding bridge models have been developed according to 

Caltrans specifications (Caltrans SDC, 2004).  A brief presentation of the models is provided in the 

following; a detailed description is given in Konakli and Der Kiureghian (2011b).  

 

The Penstock Bridge, shown in Figure 3.1 (upper left graph), is a four-span bridge with one pier per 

bent and a prestressed concrete box girder. The deck has a vertical grade, varying from 0.3% to 2.1%, 

and a constant horizontal curvature of radius R = 458m. The columns are considered rigidly connected 

to the deck at the top and fixed in all directions at the bottom. The ends of the bridge are supported on 

seat abutments. Following Caltrans specifications, the horizontal response of the abutments is modeled 

through translational springs, whereas vertical translations are fully constrained. The finite element 

model of the bridge consists of 3 elements per pier and 6, 8, 8 and 4 elements in spans 1, 2, 3 and 4, 

respectively. Vertical rigid frame elements are used to connect the tops of the piers with the deck. 

Condensing out the rotational DOF and accounting for the constraints imposed by the rigid elements, 

the structure has 103 translational unconstrained DOF and 15 translational support DOF. The 

fundamental period of the bridge model is T = 2.38s. 

 

The South Ingram Slough Bridge, shown in Figure 3.1 (lower left graph), is a two-span bridge with 

two piers per bent and a prestressed-concrete box girder. The deck has a vertical grade, varying from 

−0.52% to −0.85%, and a constant horizontal curvature of radius R = 1542.3m. The columns are 

considered rigidly connected to the deck at the top and fixed in all translational and rotational 

directions at the bottom. The two ends of the bridge are supported on seat abutments. The finite 

element model of the bridge consists of 3 elements per pier and 6 elements in each span. Vertical rigid 

frame elements are used to connect the tops of the piers with the deck. Condensing out the rotational 

DOF and accounting for the constraints imposed by the rigid elements, the structure has 55 

translational unconstrained DOF and 12 translational support DOF. The fundamental period of the 

bridge model is T = 1.24s. 

 

The Big Rock Wash Bridge, shown in Figure 3.1 (upper right graph), is a three-span bridge with three 

piers per bent and a prestressed concrete box girder. The longitudinal axis of the bridge, X, is a straight 

line. The deck is characterized by a constant profile grade of 0.5%. The piers are assumed to be rigidly 

connected to the deck at the top, whereas the bottom supports are fixed in all translational directions 

and free in all rotational directions. The two ends of the bridge are supported on seat abutments. The 

finite element model of the bridge consists of 3 elements per pier and 4 elements per span. Vertical 

rigid frame elements are used for the connection of the upper column elements with the girder 



elements. Condensing out the rotational DOF and accounting for the constraints imposed by the rigid 

elements, the structure is modeled with 89 translational unconstrained DOF and 24 translational 

support DOF. The fundamental period of the structure is T = 0.61s.  

 

The Auburn Ravine Bridge, shown in Figure 3.1 (lower right graph), is a six-span bridge with two 

piers per bent and a prestressed-concrete box girder. The deck has a vertical grade of 0.3% and a 

horizontal curvature of radius R = 1616m. The piers are considered rigidly connected to the deck at the 

top, whereas the bottom supports are fixed in all translational directions and free in all rotational 

directions. The two ends of the bridge are supported on seat abutments. The finite element model of 

the bridge consists of 3 elements per pier and 4 elements per span. The top of each pier is connected 

with the deck through two rigid frame elements: one vertical and one in the direction of the line 

connecting the tops of the piers in the bent. Condensing out the rotational DOF and accounting for the 

constraints imposed by the rigid elements, the structure has 163 translational unconstrained DOF and 

36 translational support DOF. The fundamental period of the bridge model is T = 0.59s. 

 

In the RHA analysis, Rayleigh damping is assumed, with the parameters adjusted so that the damping 

ratios of the lower modes are close to 5%. 

 
Penstock Bridge Big Rock Wash Bridge 

 

 

South Ingram Slough Bridge Auburn Ravine Bridge 

 
 

 

Figure 3.1. Bridge models 

 

 

4. GROUND MOTION INPUT  

 

The ground motion inputs in the RHA and MSRS analyses are consistent, i.e., the response spectra and 

the coherency function used to evaluate the terms in the MSRS rule represent average properties of the 

ensembles of support excitations used to perform RHA. 

 

Closely spaced records of ground motions are rare; furthermore, distances between recording stations 

differ from the distances between support points of specific structural models to be analyzed. Thus, 

RHA for multiply supported structures has to rely on synthetic ground motions. In this study, the RHA 

input consists of synthetic arrays of motions generated using the simulation method developed in 

Konakli and Der Kiureghian (2012). Spatial variability of ground motion arrays simulated with this 

method incorporates the effects of (i) incoherence, i.e. the loss of coherency of seismic waves with 



distance as represented by random differences in the amplitudes and phases of the waves, (ii) wave 

passage, i.e. the deterministic time delay in the arrival of seismic waves at separate stations, and (iii) 

variation of soil conditions underneath the supports and the way it affects the amplitude and frequency 

content of the surface motions. For uniform soil conditions, this simulation method only requires 

specification of a seed accelerogram at a reference location and a coherency function that describes the 

spatial variability of the ground motion random field.  Two approaches were developed in the 

aforementioned work: the conditional simulation method, which preserves time-history characteristics 

of the specified seed record and generates arrays of motions characterized by increasing variability 

with distance from the reference location; and the unconditional simulation method, which generates 

arrays of motions that preserve the overall temporal and spectral characteristics of the specified seed 

record and exhibit uniform variability at all locations. Since uniform variability is essential for 

consistent comparisons between the MSRS and RHA, the unconditional approach is employed in this 

study.    

 

In this study, arrays of spatially varying ground motions are simulated for two seed accelerograms; the 

fault-normal components of the Hollister South & Pine (HSP) record from the 1989 Loma Prieta 

earthquake, and the fault-normal component of the Pacoima Dam (PUL) record from the 1971 San 

Fernando earthquake. For each record, Figures 4.1 and 4.2 show the acceleration time histories and 

corresponding response spectra, respectively.  
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Figure 4.1. Acceleration time histories of seed records 
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Figure 4.2. Acceleration response spectra of seed records 

 

The coherency model employed to describe the spatial variability between the ground motion 

processes at two sites, k and l, is a function of the frequency, ω , and is given by 

 

   )/iωexp(ω/exp)(ωγ
2

app
L
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where a is an incoherence parameter, kld  is the distance between the sites k and l, sv is the average 

shear wave velocity of the ground medium along the wave travel path, L
kld  is the projected algebraic 

horizontal distance in the longitudinal direction of propagation of waves, and appv  is the surface 

apparent wave velocity. In this model, the modulus and phase shift of the coherency function represent 



the effects of incoherence and wave passage, respectively (Der Kiureghian, 1996). For the incoherence 

component, the model by Luco and Wong (1986) has been adopted.   

 

For all bridges, it is assumed that the waves propagate in the direction from abutment 1 to the 

abutment at the other end of the bridge. The values of shear wave velocity and apparent wave velocity 

are taken to be m/s600sv and m/s400appv , respectively. Analyses of recorded arrays have shown 

that the rate of decay of the incoherence component described by the incoherence parameter can vary 

significantly between different arrays (Harichandran and Vanmarcke, 1986; Abrahamson et al., 1991). 

Smaller values of the incoherence parameter indicate more coherent motions. To assess the effect of 

variations in the incoherence parameter, the values of  2.0a  and 4.0a  are considered when the 

HSP record is used as seed. (Only 2.0a  is considered when the PUL record is used as seed.) 

Ensembles of 20 support motion arrays are simulated for each case of spatial variability. 

 

It is of interest to investigate how spatial variability affects differences in the mean peak responses 

evaluated with consistent time-history and response spectrum analyses. For this reason, the case of 

uniform support excitations is also examined. For each bridge model, the input excitation in this case 

is the motion at a reference support from the ensemble of arrays simulated for 2.0a . The reference 

supports are bent 3 for Penstock Bridge, bent 2 for South Ingram Slough Bridge, bent 2 for Big Rock 

Wash Bridge and bent 4 for Auburn Ravine Bridge. 

 

The mean response spectra obtained by averaging 5% damped spectra for all simulations and all 

support points determine the respective input for the MSRS analysis. Averaging over all support 

motions is valid because under uniform soil conditions the response spectra at all support points 

should be the same. Response spectra values for damping ratios other than 5% are evaluated by 

adjusting the 5% damped spectral values according to Caltrans specifications (Caltrans SDC, 2004). 

The coherency function used to evaluate the MSRS correlation coefficients is the theoretical model in 

Eqn. 4.1. Konakli and Der Kiureghian (2012) have shown that estimates of the coherency function 

from ensembles of simulated arrays of motions are in good agreement with the target theoretical 

model. These coherency estimates are obtained after smoothing and averaging over the ensemble of 

arrays, since the non-smoothed coherency estimated from a single pair of motions exhibits erratic 

behavior. In the case of uniform excitations, the MSRS rule reduces to the square-root of the 

quadruple-sum term representing the dynamic component of the response, which has the same form as 

the well known CQC rule (Der Kiureghian, 1981), but with a more accurate approximation of the 

cross-modal correlation coefficients. 

 

 

5.  ASSESSMENT OF THE MSRS RULE BY COMPARISONS WITH RHA RESULTS 

 

Estimates of mean peak responses evaluated with the MSRS formula given by Eqn. 2.3 are compared 

with the actual means of the temporal peaks obtained from RHA using the decomposition formula in 

Eqn. 2.2. For consistent comparisons, the same integration method is used for the evaluation of the ith 

modal time-history response, )(tski , as the ith-mode spectral value,  iikD ζ,ω . The RHA results have 

been validated through comparisons with time-history analysis with software OpenSees, which 

performs integration of the equations of motion in matrix form with Rayleigh damping.  

 

The responses examined are pier drifts, which are quantities particularly important from a design 

viewpoint. On the basis of the “equal displacement” rule (Veletsos and Newmark, 1960), for 

sufficiently flexible structures, pier drifts obtained from linear analysis can be used to approximately 

evaluate nonlinear demands. Preliminary analysis has indicated that, for the pier drifts of the specific 

bridge models, considering the first 4 modes in the analysis is sufficient. For the four bridges, the 

results of the analyses are presented in Tables 5.1-5.4. For each ground motion random field, the tables 

list mean peak responses evaluated with the RHA and MSRS approaches, as well as the errors in the 

MSRS values if the RHA results are considered exact. These errors are given in parentheses next to 



the MSRS estimates. For each bridge and ground motion random field, mean values of the (algebraic) 

errors obtained by averaging over all piers are also listed. For a selected pier of each bridge and for the 

ground motion fields characterized by 2.0a  (both seed records), Figure 5.1 shows the time histories 

of the drift responses for the 20 simulated support motion arrays. In each graph, the 20 time histories 

are plotted and compared with the MSRS estimates represented by the thicker horizontal lines. These 

graphs provide an illustration of the variability of the peak responses over the ensemble of realizations. 

Note that in this figure the MSRS estimates are practically identical to the exact RHA mean peak 

values for the South Ingram Slough Bridge and the Auburn Ravine Bridge with the PUL record as 

seed. 

 

Considering the absolute values of the MSRS errors for individual pier drifts (listed in Tables 5.1-5.4), 

the maximum error observed under uniform support motions is 10.0% (HSP seed, Auburn Ravine 

Bridge, bent 2: pier 2), whereas under variable support motions this is 12.3% (PUL seed, Penstock 

Bridge, bent 4). Considering the absolute values of the average MSRS errors over all pier drifts of 

each bridge (listed in Tables 5.1-5.4), the maximum error observed under uniform support motions is 

2.4% (HSP seed, Auburn Ravine Bridge), whereas under variable support motions this is 8.0% (HSP 

seed, 4.0a , Auburn Ravine Bridge). In most cases, the errors are negative, i.e. the response 

spectrum approach underestimates the time-history response. Under uniform support motions, the 

mean (standard deviation) of the absolute values of the errors over all piers and bridges is 2.4% (2.6%) 

for HSP as seed and 3.3% (2.5%) for PUL as seed. Under variable support motions, the mean 

(standard deviation) of the absolute values of the errors over all piers and bridges is 3.5% (4.3%) for 

HSP and 2.0a , 6.0% (4.3%) for HSP and 4.0a ,  and 4.4% (3.6%) for PUL. 

 

The MSRS method is intended for use in conjunction with smooth response spectra that represent 

broadband excitations and a smooth coherency function. In our analysis, jagged response spectra from 

relatively narrowband excitations were used. Furthermore, the smooth coherency function used for 

evaluation of the correlation coefficients in the MSRS analysis differs from the actual coherency 

values for pairs of simulated support motions, which can exhibit large fluctuations around the 

theoretical model. Considering these differences, the results of the MSRS analysis are found to be 

remarkably accurate. The errors tend to be larger under spatially varying motions compared to the case 

of uniform excitations. This is because the case of variable support motions employs additional 

assumptions regarding the coherency model explained above and involves additional approximations 

in representing the pseudo-static component of the response and its cross with the dynamic 

component. 

 

 

6. CONCLUSIONS 

 

The accuracy of the MSRS method in evaluating mean peak responses of bridges subjected to spatially 

varying ground motions was assessed through comparisons with respective results from consistent 

RHA. Considering absolute values of the MSRS errors, the mean and standard deviation over all 

responses examined (pier drifts of four bridge models) and non-uniform ground motion fields 

considered (three cases) were 4.6% and 3.7%, respectively. The maximum error observed was 12.3%, 

but in most cases, the errors were smaller than 10%. The good agreement between the two analysis 

approaches showed that the MSRS method is a reliable tool for response spectrum analysis under 

differential support excitations. 
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Table 5.1. Penstock bridge: Mean peak pier drifts (in meters) from RHA and MSRS analyses and respective 

MSRS errors 

seed: HSP 

location 
uniform motions variable motions, 2.0a  variable motions, 4.0a  

RHA MSRS (% error) RHA MSRS (% error) RHA MSRS (% error) 

bent 2 0.322 0.322   (0.0) 0.294 0.289   (−1.7) 0.325 0.320 (−1.5) 

bent 3 0.302 0.296 (−2.0) 0.281 0.271   (−3.6) 0.299 0.302   (1.0) 

bent 4 0.241 0.230 (−4.6) 0.303 0.272 (−10.2) 0.295 0.273 (−7.5) 

average            (−2.2)              (−5.2)            (−2.7) 

seed: PUL 

location 
uniform motions variable motions, 2.0a   

RHA MSRS (% error) RHA MSRS (% error) 

bent 2 0.468 0.466 (−0.4) 0.449 0.420   (−6.5) 

bent 3 0.434 0.430 (−0.9) 0.408 0.396   (−2.9) 

bent 4 0.353 0.334 (−5.4) 0.448 0.393 (−12.3) 

average            (−2.2)              (−7.2) 

 

Table 5.2. South Ingram Slough Bridge: Mean peak pier drifts (in meters) from RHA and MSRS analyses and 

respective MSRS errors 

seed: HSP 

location 
uniform motions variable motions, 2.0a  variable motions, 4.0a  

RHA MSRS (% error) RHA MSRS (% error) RHA MSRS (% error) 

bent 2: pier 1 0.217 0.217 (0.0) 0.207 0.206 (−0.5) 0.197 0.196 (−0.5) 

bent 2: pier 2 0.217 0.217 (0.0) 0.207 0.206 (−0.5) 0.197 0.196 (−0.5) 

average            (0.0)            (−0.5)            (−0.5) 

seed: PUL 

location 
uniform motions variable motions, 2.0a   

RHA MSRS (% error) RHA MSRS (% error) 

bent 2: pier 1 0.387 0.387 (0.0) 0.368 0.368 (0.0) 

bent 2: pier 2 0.387 0.387 (0.0) 0.368 0.368 (0.0) 

average            (0.0)            (0.0) 



 
Table 5.3. Big Rock Wash Bridge: Mean peak pier drifts (in meters) from RHA and MSRS analyses and 

respective MSRS errors 

seed: HSP 

location 
uniform motions variable motions, 2.0a  variable motions, 4.0a  

RHA MSRS (% error) RHA MSRS (% error) RHA MSRS (% error) 

bent 2: middle 0.063 0.061 (−3.2) 0.041 0.040 (−2.4) 0.045 0.042 (−6.7) 

bent 2: side 0.063 0.061 (−3.2) 0.041 0.040 (−2.4) 0.045 0.042 (−6.7) 

bent 3: middle 0.070 0.071   (1.4) 0.059 0.058 (−1.7) 0.062 0.059 (−4.8) 

bent 3: side 0.070 0.071   (1.4) 0.059 0.058 (−1.7) 0.062 0.059 (−4.8) 

average            (−0.9)            (−2.1)            (−5.8) 

seed: PUL 

location 
uniform motions variable motions, 2.0a   

RHA MSRS (% error) RHA MSRS (% error) 

bent 2: middle 0.114 0.111 (−2.6) 0.072 0.079   (9.7) 

bent 2: side 0.114 0.111 (−2.6) 0.072 0.079   (9.7) 

bent 3: middle 0.123 0.126   (2.4) 0.121 0.115 (−5.0) 

bent 3: side 0.123 0.126   (2.4) 0.121 0.115 (−5.0) 

average    (−0.1)              (2.4) 

 

Table 5.4. Auburn Ravine Bridge: Mean peak pier drifts (in meters) from RHA and MSRS analyses and 

respective MSRS errors 

seed: HSP 

location 
uniform motions variable motions, 2.0a  variable motions, 4.0a  

RHA MSRS (% error) RHA MSRS (% error) RHA MSRS (% error) 

bent 2: pier 1 0.041 0.038   (−7.3) 0.033 0.032 (−3.0) 0.033 0.033     (0.0) 

bent 2: pier 2 0.040 0.036 (−10.0) 0.033 0.033   (0.0) 0.033 0.033     (0.0) 

bent 3: pier 1 0.059 0.057   (−3.4) 0.030 0.029 (−3.3) 0.035 0.031 (−11.4) 

bent 3: pier 2 0.057 0.055   (−3.5) 0.028 0.029   (3.6) 0.033 0.030   (−9.1) 

bent 4: pier 1 0.074 0.073   (−1.4) 0.035 0.034 (−2.9) 0.042 0.037 (−11.9) 

bent 4: pier 2 0.073 0.072   (−1.4) 0.034 0.033 (−2.9) 0.041 0.036 (−12.2) 

bent 5: pier 1 0.081 0.081     (0.0) 0.047 0.045 (−4.3) 0.052 0.047   (−9.6) 

bent 5: pier 2 0.081 0.081     (0.0) 0.045 0.043 (−4.4) 0.051 0.046   (−9.8) 

bent 6: pier 1 0.077 0.078     (1.3) 0.061 0.056 (−8.2) 0.062 0.057   (−8.1) 

bent 6: pier 2 0.078 0.079     (1.3) 0.060 0.055 (−8.3) 0.061 0.056   (−8.2) 

average              (−2.4)            (−3.4)              (−8.0) 

seed: PUL 

location 
uniform motions variable motions, 2.0a   

RHA MSRS (% error) RHA MSRS (% error) 

bent 2: pier 1 0.080 0.077 (−3.8) 0.082 0.087   (6.1) 

bent 2: pier 2 0.079 0.076 (−3.8) 0.083 0.089   (7.2) 

bent 3: pier 1 0.107 0.099 (−7.5) 0.069 0.068 (−1.4) 

bent 3: pier 2 0.104 0.097 (−6.7) 0.069 0.069   (0.0) 

bent 4: pier 1 0.129 0.122 (−5.4) 0.057 0.057   (0.0) 

bent 4: pier 2 0.127 0.120 (−5.5) 0.057 0.056 (−1.8) 

bent 5: pier 1 0.131 0.131   (0.0) 0.070 0.072   (2.9) 

bent 5: pier 2 0.132 0.130 (−1.5) 0.066 0.068   (3.0) 

bent 6: pier 1 0.118 0.125   (5.9) 0.116 0.109 (−6.0) 

bent 6: pier 2 0.119 0.126   (5.9) 0.109 0.104 (−4.6) 

average            (−2.2)              (0.5) 
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Penstock Bridge, bent 3 
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South Ingram Slough Bridge, bent 2: pier 1 
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Big Rock Wash Bridge, bent 2: middle pier 
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Auburn Ravine Bridge, bent 4: pier 1  
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Figure 5.1. RHA and MSRS pier drift responses 

 


