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SUMMARY:  
The Smoothed Particle Hydrodynamics (SPH) method for simulation of earthquake induced slope failure is 
presented. The SPH method was first invented for simulating dynamic behavior of compressive viscous fluid in 
the late 1970s and has been applied to other various problems in engineering field. So far the SPH method has 
been extended to handle not only fluid dynamics but also solid dynamics. The most advantage of the SPH 
method compared to other well established numerical method, such as the Finite Element Method, the Finite 
Discrete Method et al., is feasibility of analyzing discontinuity problem. This feature of the SPH method is 
desirable to earthquake induced slope failure simulation because slope failure phenomena posses discontinuity 
inherently. In this paper, the SPH method is adapted to simulate the earthquake induced slope failure. The SPH 
method can describe full dynamic behavior of a slope excited by earthquake and possible to predict the final 
configuration of slope after failure. 
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1. INTRODUCTION 
 
Slope failures often give serious damages to the lifeline systems. For instance, the external power 
supply system of Fukushima Dai-ichi Nuclear Power Station suffered severe damages caused by slope 
failure following the 2011 Tohoku earthquake (NERH, 2011). Numerical simulation is a powerful 
engineering tool for developing a countermeasures of slope protection against earthquake. The finite 
element method (FEM) is widely used to assess a slope stability against an earthquake (Toki et al., 
1985, Zheng et al., 2005). However, the FEM has some difficulties on the treatment of extremely large 
discontinuous deformation. Therefore there are some limitations for applying to slope failure problem. 
The discrete element method (DEM) (Cundall and Struck, 1979) is a popular tool for handling large 
and discontinuous deformation problem in the geotechnical engineering. However, the DEM has still 
disadvantages on the determination of its parameters. On the other hand, the smoothed particle 
hydrodynamics (SPH) method has been developed for handling large deformation problems. Lucy 
(1977), Gingold and Monaghan (1977) have invented the SPH for simulating viscous fluid flow. Since 
1990s, some researchers have extended the method to dynamics of solid bodies (Libersky et al., 1993, 
Gray et al., 2001). In this study, application of the SPH method to simulation of slope failure during an 
earthquake are discussed. In the section 2, the concept of the SPH and the fundamental equations are 
introduced briefly. The analytical model for conducting the SPH simulations is described in the 
section 3. The results from the SPH simulation and discussions are given in the section 4. Finally the 
conclusion of this study is summarised in the section 5. 
 
 
2. SMOOTHED PARTICLE HYDRODYNAMICS 
 
2.1. SPH Formulations 
 



According to the SPH, an approximation form of a function )(xf  is given by 
 

    ',')'()( xxxxx dhWff        (2.1) 

 

where x  denotes the position vector and  hW ,'xx   is a smoothing kernel function and the 

cubic-spline kernel (Liu and Liu, 2003) is used in this study. Applying the discretization with particle 
approximation, the integral in Eqn. 2.1 is rewritten as summation, 
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where  hWW ijij ,xx   and the superscripts i and j are index of particle and mi and i denote the 

mass and density of particle i, respectively. N is a number of particles within 2h from the particle i. 
The SPH approximation of the spatial derivative of the function )(xf  is given by 
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where the subscripts  is used to denote the coordinate directions. 
 
The SPH approximating equation of Eqns. 2.2 and 2.3 often suffers from low accuracy due to 
deficiency of nearby particles. Chen et al. (1999) proposed the Corrective SPH (CSPH) method to 
prevent the problem. In the CSPH, the SPH Eqns. 2.2 and 2.3 are replaced by 
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respectively. Note that a set of linear equation needs to be solved for each particle in each time step 
and thus it increases computational costs significantly. In this study, Eqns. 2.4 and 2.5 are used rather 
than Eqns. 2.2 and 2.3. 
 
2.2. Governing Equations 
 
The equation of motion for a continuum is given by 
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where u denotes the displacement.  and b are is the density and the body force respectively. is 



the stress tensor. Applying Eqn. 2.5 and after several mathematical manipulation (Liu and Liu, 2003), 
the SPH approximation of Eqn. 2.6 is given by, 
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         (a) Shear strain distribution by SPH        (b) Shear strain distribution by FEM 
 

 
      (c) Input ground motion (JMA Kobe 1995)        (d) Acceleration response 
 

Figure 1. Validation of the Rayleigh damping 
 
2.3. Rayleigh Damping 
 
The Rayleigh damping is popularly used for the FEM in the earthquake engineering. The Rayleigh 
damping matrix [C] is defined by 
 
             tuKMtuC RR            (2.8) 
 
where [M] and [K] are the mass matrix and the stiffness matrix respectively.   tu  is the nodal 

velocity vector at time t. R and R are the damping coefficients. On the other hand, the SPH does not 
have the mass and the stiffness matrices. Therefore some modifications are required for applying the 
Rayleigh damping to the SPH simulation. The first order Taylor expansion of the second term of the 
right-hand side of Eqn. 2.8 gives 
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where {f(t)} is the internal force vector and t is the time increment. The right-hand side of Eqn. 2.9 is 



equivalent to 
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On the other hand, the term  MR  in the right-hand side of Eqn. 2.8 corresponds to R  
obviously. Then the Rayleigh damping force for the SPH is given by 
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 (2.11) 
 
In Figure 1, the earthquake response of a slope model which calculated by SPH with the 5 % Rayleigh 
damping is compared with the result from FEM. The shear strain distribution and the response 
acceleration time history show good agreement each other.  
 
2.4. Artificial Viscosity 
 
Monaghan (1989) introduced the artificial viscosity to prevent unphysical penetration and clumping of 
particles. The artificial viscosity term is defined by 
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where   and   are the coefficient of the artificial viscosity. c is the sound speed and 
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where h denotes the smoothing length and   is a parameter inserted to prevent numerical divergence.  
Introducing the artificial viscosity term, Eqn. 2.7 is replaced by 
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2.5. Time Integration 
 
The Leapfrog time integration scheme is used in this study. The velocity and displacement of particle i 
are given by, 
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respectively. 
 
 
3.SLOPE MODEL 
 
3.1. Model 
 
3.1.1. Geometry and Boundary Condition 
In this study, the dynamic behaviour of a slope excited by earthquake is analyzed by using the SPH 
method. The geometry of the slope model is shown in Figure 2. The rigid boundary condition is given 
to the bottom of the analytical model. In addition, horizontal component of the displacement is fixed at 
both of side boundaries. 
 

 
 

Figure 2. Geometry of slope model 
 
3.1.2. Constitutive Model 
The Mohr-Coulomb model is employed for the slope material in this study. According to the 
Mohr-Coulomb model, the shear strength f is defined by 
 

 tan cf  (3.1) 

 
where c and  are cohesion and internal friction angle respectively.  is the normal stress at the state. 
In addition to the conservative Mohr-Coulomb model, strength drop-off is introduced in this study. For 
the first failure of the material, the peak cohesion cp and the peak friction angle p are used for Eqn. 
3.1. Once the material reached the failure line, the shear strength is dropped off. The residual cohesion 
cR and the residual internal friction angle R are used for defining the second failure line. 

 
 Table 1. Material properties of slope 

density  1.61 t/m3

peak cohesion cp 143.3 kN/m2

peak internal friction angle p 5.9 deg.

residual cohesion cR 103.1 kN/m2

residual internal friction angle R 5.9 deg. 

elastic modulus E 389000 kN/m2

Poisson ratio  0.466
 
3.1.3. Initial Particle Arrangement 
Three different particle arrangements are used in this study. Particles are regularly arranged with  
equivalent spacing dp = 0.5, 1.0 and 2.0 m. Figure 3 shows the initial particle arrangements for three 
cases. Three fixed particle lines are added to the bottom of each model for ensuring the rigid boundary 
condition. Total number of particles used is shown in the figures. 
 



 
 

Figure 3. Initial particle arrangement 
 

 
 

Figure 4. Initial stress distribution obtained by the gravity loading analysis 
 
3.2. Initial Stress Condition 
 
The stress distribution before seismic loading is calculated as the response to the gravity. Initially all 
stress components are assumed to be zero and then the gravity load is applied gradually to the model. 
The gravity loading a(t) at the time step t is given by 
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where g is the acceleration of gravity and T is the duration of loading. In this study, T is fixed to be 
5.0s. For the sake of avoiding superfluous vibration during the gravity loading process, an additional 
damping force D(t) is applied. 
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dp = 0.5 m

dp = 1.0 m

dp = 2.0 m



 
where  is a non-dimensional damping coefficient. Bui et al. (2010) recommend that the value should 
be in range of  =0.001 - 0.005. In this paper, the results for =0.005 are presented. Other damping 
forces, such as Rayleigh damping and artificial damping, are not used here. The distribution of vertical 
stress component for each case of particle spacing is shown in Figure 4. The initial stress distribution 
is obtained properly for each size of particle spacing.  
 
3.3. Input Ground Motion  
 
The sinusoidal wave with 1.2 Hz is used for the horizontal component of the input ground motion. The 
maximum amplitude A is set to be 400, 500 and 600 gal. Figure 5 shows the normalized wave form of 
the motion. In addition, the gravity force is applied to the vertical direction without any other 
excitation. 
 

 
 

Figure 5. Horizontal input ground motion 
 
 
4. RESULTS AND DISCUSSIONS 
 
4.1. Response to Ground Motion  
 
The SPH results from different intensity of the input motion are compared in Figure 6. The material 
properties used here are tabulated in Table 1. Initial particle spacing dp is set to be 0.5 m. For artificial 
viscosity,  =  = 0.001 and = 0.01 are used. It is observed that failure line appeared from the 
bottom of the slope and grew up for each case. Slip failure took place and discontinuity appeared at 
the top of the slop. The displacement of the sliding mass becomes larger depending on intensity of the 
input motion. 
 

    
       (a) t = 5.0 s         (b) t = 10.0 s           (c) t = 15.0 s          (d) t = 20.0 s 

 
Figure 6. Simulation snapshots (comparison of the intensity of excitation) 

 
4.2. Effect of Particle Density 
 
The effect of the particle density is investigated here. Tree different values of initial particle spacing 
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are examined; 0.5, 1.0 and 2.0 m. The values of  =  = 0.001 and = 0.01 are used for the 
artificial viscosity. The amplitude of the input ground motion is 600 gal. Figure 7 shows the particle 
configuration at t = 5.0, 10.0, 15.0 and 20.0 s respectively. The failure lines appeared at same location 
for all cases. However, the width of the slip line and the displacement of the sliding mass are different 
each other. In general, the smoothing length of the kernel takes larger value when the particle spacing 
becomes larger. Therefore the larger particle spacing decreases spatial resolution of the simulation. 
 

    
       (a) t = 5.0 s         (b) t = 10.0 s           (c) t = 15.0 s          (d) t = 20.0 s 
 

Figure 7. Simulation snapshots (comparison of initial particle spacing) 
 
4.3. Effect of Artificial Viscosity  
 
The artificial viscosity force gives bulk and shear viscosity. In Figure 8, the results are compared for 
different artificial viscosity parameters. The behaviour of the slope model is quite different though the 
artificial viscosity is preferred to use for avoiding the unrealistic particle clumping. Therefore the 
parameters for the artificial viscosity should be chosen carefully.  
 

   
 

       (a)  = = 0.01         (b)  = = 0.001           (c)  = = 0.0001 
 

Figure 8. Simulation snapshots at t = 21.0 s (comparison of artificial viscosity) 
 
4.4. Computational Time 
 
The SPH simulations shown in this paper were carried out on Intel Core i7 3.3GHz CPU and 24GB 
RAM system. The SPH simulation code used by this study has been developed by the author. The 
computational times for the cases of dp = 0.5, 1.0, 2.0 m are measured compared in Figure 9. In 
addition to these cases, the simulation with dp = 0.25 m was carried out though the result is not 
presented in this paper. The blue solid line is Cxlog10x where x denotes number of particle and C = 
1.525E-5. The required computational time can be estimated by using this function. For instance, the 
SPH simulation with 30,000 particles and 100,000 time steps requires more than two days. More 
efficient computer code is expected for practical use of the SPH simulation. 
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Figure 9. Comparison of elapsed CPU time per one time step 
 

 
5. CONCLUSIONS 
 
The paper presents the application of the SPH method to simulation of earthquake-induce slope failure. 
The accuracy of the SPH simulation for the earthquake response analysis is validated by comparison 
with the FEM method. In addition, the Rayleigh damping force is introduced to SPH. The SPH 
simulation can represent dynamic behaviour of slope failure including large and discontinuous 
deformation and can be used to predict the final configuration of the slope after failure. However it is 
shown that parameters specific to SPH method affect the results and these parameters must be chosen 
properly. The required CPU cost increases drastically when number of particles used in the simulation 
increases. Efficient computer code is desired for practical use of the SPH simulation. 
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