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SUMMARY: 
Technical trend for speed-up of CPUs has been shifted from single-core to multi-core these days. Although the 
performances have become higher than a few decades before, it is necessary to shorten processing time and get 
required amount of memory by using processors and memories in a number of computers for solving large-scale 
simultaneous linear equations, because the degrees of freedom tend to be large in three-dimensional finite element 
method analysis. In this paper, a parallelization method applied to the dynamic soil-structure response analysis 
program is outlined, and the effectiveness of the program was verified by the relationship between degrees of 
freedom and required processing time, and by calculation results. In comparison with theoretical values of 
damping ratio due to dissipation damping based on elastic wave theory, the damping ratio calculated from 
amplitude reduction factors of responses are considered generally valid. 
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1. INTRODUCTION 
 
Superstructures are usually designed based on the premise in structural design that the foundation is 
designed in accordance with the criterion which doesn't allow it damaged when predicted major 
earthquake hits. However, it hasn't yet clarified how much the degradation of stiffness and bearing 
capacity of ground and foundation by the external force which exceeds the design load has an influence 
on the response of superstructure. 
 
To examine how much is the effect of stiffness and strength of ground and foundation on the response of 
superstructure, I have made a program that can take account of the dynamic interaction between ground 
and superstructure with spread foundation using three-dimensional finite element method. This program 
has been parallelized with message passing interface (MPI), which make it possible to be processed on 
distributed memory parallel computer. 
 
 
2. CALCULATION METHODS 
 
Parallel computing, in this paper, is for solving large-scale problems in a short time by dividing the 
analysis object into some processes of a computer cluster; beside, when solving problems using 3D 
FEM on parallel computers, parallelization only for linear equations solver is not enough. Thus, to 
increase in speed of calculation and to save the memory space, domain decomposition method (DDM) 
developed by Soneda, Yagawa and Yoshimura (1991) and compressed sparse row format (CSR) have 
been applied to the program. 
 
2.1. Kinematic Equation with Three-Dimensional Viscous Boundary 
 
In the kinematic equation of soil-structure analysis, ground acceleration was input and three- 



dimensional viscous boundary was applied to the lateral and bottom boundary around analysis domain 
to reduce the influence on structure by reflected wave. The equation that solves problems of ground 
and superstructure without dividing them is described as below. 
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Here [M], [C], and [K] are matrices of mass, damping, and stiffness of ground. [GLtrl] , [CLtrl], and 
[GCLtrl] are a boundary stiffness matrix, a viscous boundary matrix, and a boundary damping matrix of 
lateral free field out of the analysis domain.  ut ,  g

t u , and  ft u  are vectors of response 

displacement, ground acceleration, and displacement of lateral free field at time t s. 
 
2.2. Incremental Form of the Newmark-beta Method 
 
Kinematic equation Eqn. 2.1 comes down to an incremental form described as below. 
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Here  K  is an effective stiffness matrix,  utt
t
  and  ptt

t
  are vectors of incremental displacement 

and incremental effective nodal force from time t s to t+t s. With Newmark-beta method associating 

Eqn. 2.2 with Eqn. 2.1,  K  and  ptt
t
  can be described as follows. 
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Where  = 0.25 in this study, which yields the constant average acceleration method. 
 
2.3. Application of Domain Decomposition Method 
 
To apply domain decomposition method to Eqn. 2.2, all nodes were sorted into structure (suffix s) and 
ground that includes foundation (suffix g), then the ground nodes were sorted into internal nodes (suffix 
I) and inter-subdomain boundary nodes (suffix B). Furthermore, internal nodes were sorted into n 
subdomains, and inter-subdomain boundary nodes were sorted into nodes of rigid foundation (suffix R) 
and others (suffix F). Coefficient matrices were made for each subdomain, and vectors of internal 
nodes were made for each subdomain. But vectors of boundary nodes were made not only for each 
subdomain but also as a whole, as shown in Fig. 2.1. 
 

 
 

Figure 2.1. Domain-wise decomposition 
 
Then the components of the matrix and the vectors in Eqn. 2.2 can be described as follows. 
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Here O is a zero matrix and  k

BN  (k=1~n) is a matrix that transforms a force vector of boundary nodes in 

each subdomain   k
Bp  into that of total boundary nodes in the whole domain  Bp . The transpose of 

 k
BN  is a matrix that transforms a displacement vector of total boundary nodes  Bu  into that of 

boundary nodes in each subdomain   k
Bu . These relationships can be described as follows. 

 

        


n

k

k
B

k
BB pNp

1
 (2.6a) 

       B

Tk
B

k
B uNu   (2.6b) 

 
In addition,  g

Rp̂  and  g
Rû  in Eqn. 2.5 are a force vector and a displacement vector of a representative 

node of rigid foundation, and, with a matrix R for dealing with rigid body, those are associated with a 
force vector  g

Rp  and a displacement vector  g
Ru  of ground nodes where rigid foundation is located. 

Those relationships are described as below. 
 
 g

R
g
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R
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R uRu ˆ  (2.7a, b) 
 
When the rigid foundation has three degrees of freedom (DOFs) shown in Fig. 2.2, the matrix R is given 
as below. 
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Here m is a number of ground nodes that consists rigid foundation and  k

xL  and  k
zL  are differences 

between an original node and the representative node of the foundation in horizontal x-coordinate and 
vertical z-coordinate, respectively. 
 

 
(a) Force equilibrium (b) Displacement continuity 

 
Figure 2.2. Force equilibrium and displacement continuity of rigid foundation 

 
Then Eqn. 2.5 were divided into three equations: internal nodes of each subdomain of ground (Eqn. 2.9), 
total boundary nodes (Eqn. 2.10), and superstructure (Eqn. 2.11). 
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Solving Eqn. 2.9 for 
  kg

FI
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t u
  and Eqn. 2.11 for  stt

t u
 , the following equations were obtained. 
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Then, substituting Eqn. 2.12 and 2.13 in Eqn. 2.10, Eqn. 2.14 were obtained. 
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The flow in each time step is shown as follows: 

(1) Solve Eqn. 2.14 to get  Tg
R

tt
t

g
F
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t uu ˆ  by conjugated gradient method, then transform it into 
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(2) Solve Eqn. 2.12 and Eqn. 2.13 to get 
  kg

FI
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  and  stt

t u
 , respectively. 

(3) Assume response acceleration, velocity, and displacement in the next time step from the incremental 
displacement obtained above. 
(4) Calculate nodal force from displacement. 
(5) Calculate unbalanced force  uP  and do convergence test. If it is converged, move on to the next 
step. 
(6) If it is not converged, calculate additional incremental displacement from unbalanced force and 
renew acceleration, velocity, and displacement. Then back to (4). 
 
The unbalanced force vector  uP  in the flow is given by 
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Here H is a kind of connection matrix for force equilibrium between rigid foundation and superstructure. 
When restoring force of superstructure  sp  has one DOF in lateral x-coordinate, which satisfies the 

equilibrium shown in Fig. 2.3(a). There is a relationship between  sp  and the restoring force on the 

representative nodes    T
zxzx

g
R mppp ˆ  with H in RHS of Eqn. 2.15b, as shown below. 
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Whereas displacement of structure {us} and the representative node of rigid foundation 
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(a) Force equilibrium (b) Displacement continuity

 
Figure 2.3. Relationships in force and displacement of superstructure and foundation 

 
The coefficient matrices [M], [C], and [K] in Eqns. 2.3, 2.4, and 2.15 are given as follows. 
 
      TRMRM 000  (2.17) 

        TT HRCRHC 00000  (2.18) 

        TT HRKRHK 00000  (2.19) 
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Substituting from Eqn. 2.17 to Eqn. 2.19 into Eqns. 2.3, 2.4, and 2.15, the effective stiffness matrix, the 
effective nodal force vector, and the unbalanced force vector are obtained. These vectors and matrices 
have to be given separately as DOF of internal nodes, total boundary nodes, and structure nodes. In 
parallel computing, each processing node has only to make and memorize required vectors and matrices 
for the node. The flowchart is shown in Fig. 2.4. White-on-black items in this chart are parallelized 
processes. 
 

 
 

Figure 2.4. Program flowchart 
 
 
3. FREE VIBRATION ANALYSIS OF A STRUCTURE ON ELASTIC GROUND 
 
To analyze performance and to verify results, free vibration analysis of ground model with a 
superstructure shown in Fig. 3.1 was executed. 
 
3.1. Analytical Model 
 
Ground was modeled with 8-node hexahedral isoparametric elastic elements. On the lateral and 
bottom ground boundary there were three-dimensional viscous boundary, except that the vertical 
DOFs on bottom boundary were fixed. Soil density was 1.7 t/m3, Poisson ratio was 0.35, and intrinsic 
attenuation was 0 %. There were two cases of shear wave velocity: 150 and 300 m/s. A part of ground 
in the model was transformed to rigid spread foundation, on which single-degree-of-freedom 
superstructure was. The foundation was a square 20 m on each side without thickness. 
 

 
 

Figure 3.1. Analytical model 



Size of ground in depth direction was 50 m, and there were three cases for horizontal directions: 100 
m, 200 m, and 400 m (Table 3.1). In addition, there were three cases for size of elements (variant y in 
Figure 3.1): 10 m, 5 m, and 2.5 m. 
 
Table 3.1. Size of ground 
Case x-direction y-direction z-direction 
g100 100 m 100 m 
g200 200 m 200 m 
g400 400 m 400 m 

50 m 

 
The superstructure was modeled by undamped elastic single-degree-of-freedom shear spring model. 
Each story was a square 20 m on each side, and its weight m was 480 t. There were four cases of 
number of stories n: 3, 6, 9, and 12. The story height h was 3.33 m. The elastic natural period TS 
considering fixed-base are calculated by 0.02nh s. To reduce the DOFs of structure to one DOF, an 
n-DOF model was made at first, and inverted-triangle-shaped first eigenmode was assumed to the 
n-DOF model. Therefore, equivalent mass M  and equivalent height H  were calculated by Eqn. 3.1, 
and equivalent stiffness was calculated from H  and TS. 
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where su1  is the first eigenvector of the i-th story, and Hi is the height from ground level to the i-th 
story. 
 
 
4. ANALYTICAL RESULTS OF FREE VIBRATION 
 
For free vibration analysis, a cycle of acceleration   ttx 8cos1 m/s2 was input only to the node of 
superstructure, in which t is elapsed time. Analysis time was 4.0 s and time interval for integration was 
0.01 s. 
 
4.1. Processing Time for Calculation 
 
Out of total 9 cases by ground size (g100, g200 and g400) and element size (e10, e5 and e2.5), cases 
except for g400+e2.5 were processed on HA8000 cluster system in Information Technology Center, 
The University of Tokyo. The number of elements and DDM partitions in three directions, the number 
of DOFs, and the number of processing nodes are shown in Table 4.1. However, because the size of 
case g400+e2.5 was too large to be calculated in time limit of personal course of HA8000 cluster 
system, it was calculated on another symmetric multiprocessing computer. 
 
Table 4.1. Partitioning for domain decomposition method and degrees of freedom 

Elements Partitions Degrees of freedom 
Case x y z x y z Internal nodes on each 

subdomain, maximum
Total boundary nodes 

Number of processes

g100+e10 8 8 8 2 2 1 675 1431 4 
g100+e5 12 12 12 2 2 2 1029 3591 8 
g100+e2.5 20 20 20 4 4 2 1188 13959 32 
g200+e10 18 18 8 4 4 1 972 5631 16 
g200+e5 32 32 12 8 4 2 945 22311 64 
g200+e2.5 60 60 20 8 8 4 1458 104631 256 
g400+e10 38 38 8 8 8 1 972 22167 64 
g400+e5 72 72 12 16 8 2 1260 100311 256 
g400+e2.5 140 140 20 16 16 1 6300 376071 16 (on another SMP)
 



By the method used in this program, the smaller the number of DOFs of internal nodes in each 
subdomain is, the shorter the processing time can be, but at the same time, because the number of total 
boundary nodes gets increased, the processing time for total boundary nodes can be longer. Therefore, 
it is necessary to consider the trade-off determining the best number of partitioning, but in this paper, 
the number of DOFs of internal nodes was set around 1000 to examine the relationship between the 
DOFs of total boundary nodes and processing time, as shown in Fig. 4.1 (except for g400+e2.5). It 
was recognized that the processing time was basically in proportion to the DOFs of total boundary 
nodes by the analysis. 
 

 
 

Figure 4.1. Relationship between degrees of freedom of total boundary nodes and average processing time 
 
4.2. Response of Ground and Superstructure 
 
It is vertical response displacement of ground surface (red closed circles in Fig. 3.1) of the case 
g200+e2.5, VS=150 m/s, and 3-story building that is shown in Fig. 4.2. It is observed that waves are 
slightly reflected from lateral boundary. Cases g100, g200, and g400 of case e2.5 and VS=150 m/s are 
compared in Fig. 4.3. There is bare difference between g200 and g400, and in the 3-story graphs, there 
is an conspicuous influence of reflected waves. Cases e10, e5, and e2.5 of case g400 and VS=150 m/s 
are compared in Fig. 4.4. When the size of elements are smaller, the period of structure response is 
longer and the horizontal displacement and rotational angle are higher. When the absolute value of 
responses are important, it is necessary to make the size of elements smaller than case e2.5. 
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Figure 4.2.Vertical response displacement on surface of ground (g200+e2.5, VS=150m/s, 3-story) 
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Figure 4.3. Response displacement of superstructure and foundation (Case e2.5, VS=150 m/s) 
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Figure 4.4. Response displacement of superstructure and foundation (Case g400, VS=150 m/s) 
 
4.3. Equivalent Damping Ratio 
 
To evaluate equivalent damping ratio due to dissipation damping, three cycles of response after the 
first peak was used by Eqn. 4.1, which is based on amplitude reduction factor. 
 

 
u

u
h

Tt

t

i
i

i

 log
2

1


 (4.1) 

 
where uit  is a peak displacement of structure at ti s, and T is a period of structure response. 
 
The damping ratios are shown in Fig. 4.5 comparing with values based on the elastic theory (Tajimi, 
1959). Fig. 4.5(a) compares the values in different ground sizes of case e2.5. When VS=150 m/s, the 
value of g200 and g400 were almost the same value, but that of g100 differed from them 
approximately from -0.6% to +1.5%. Fig. 4.5(b) compares the values in different element sizes of case 
g400. When VS=150 m/s, the value of e5 and e2.5 were almost the same value, but that of e10 differed 
from them approximately from -1.9% to +0.8%. In the cases of VS=300 m/s, the differences of the 
values were smaller than the cases of VS=150 m/s. In addition, comparing with the values based on the 
elastic theory in Fig. 4.5, the values by FEM analysis were between lines of sway-only case and 
rocking-only case. 
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Figure 4.5. Damping ratios comparing with values by elastic theory 
 
 
5. SUMMARY AND CONCLUSIONS 
 
In this paper, a parallelizing method for soil-structure dynamic response analysis is described, and 
through free vibration analysis, conclusions listed below are obtained. 
 
1) Through the analysis on HA8000 cluster system, it was recognized that the required processing time 
was basically in proportion to the degrees of freedom of problems that have less than a few hundred 
thousand degrees of freedom. 
 
2) To reduce the influence of reflected waves when the structure is on the soft ground (Vs = 150 m/s), 
it was necessary that horizontal size of ground was more than 20 times larger than the size of 
foundation. In addition, when the absolute values of responses are important, size of ground element 
around foundation need to be less than 2.5m on each side. 
 
3) In comparison with theoretical values of damping ratio due to dissipation damping based on the 
elastic wave theory, the damping ratio calculated from amplitude reduction factors of response is 
between the theoretical values of sway-only case and rocking-only case. In the case e2.5 of VS=150 
m/s, the value of g200 and g400 were almost the same value, but that of g100 differed from them 
approximately from -0.6% to +1.5%. In the case g400 of VS=150, the value of e5 and e2.5 were almost 
the same value, but that of e10 differed from them approximately from -1.9% to +0.8%. 
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