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SUMMARY: 
A new way of structural monitoring and damage detection procedure will be discussed, which employs fiber 
optic sensors for static and dynamic axial deformation of columns of steel high-rise buildings. The long-term 
monitoring is done for the E-defense specimen and actual high-rise buildings during their construction and 
demolition. Static deformation of columns was properly measured showing the change of building weight, which 
is effective data for the evaluation of structural stiffness through the natural period of the structure. Dynamic 
deformation measurement was also tried using the same sensors. It was observed that the dynamic axial 
deformation of columns shows natural frequency of the structure, and is possible information on structural 
damage as change of stress distribution in the structure. Log-term stability of the fiber-optic sensor is effective 
for structural monitoring, however, the correction of thermal strain is strictly required as shown in the paper. 
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1. INTRODUCTION 
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During the 2011 off the Pacific coast of Tohoku Earthquake, Japan, a number of high-rise buildings 
showed large responses in Tokyo metropolitan area and in other areas where several hundreds 
kilometres apart from the earthquake source. Responses were not extremely large as to cause severe 
structural damage, however interior equipments were damaged and some users have injured. The 
long-period component of seismic waves with period of several seconds will predominate especially 
within the large sedimentary basin. Most of high-rise buildings in Japan are located in large cities on 
sedimentary basins, however, the effect of long-period ground motion was not suitably considered in 
structural design in the past, and they have not yet experienced destructive earthquake ground motions 
with long-period component. In Japan, other large earthquakes are predicted to occur in the near future 
along the southwest coast of the Pacific Ocean. Structural retrofitting of existing high-rise buildings 
has just started in Japan using additional dampers. 
 
Considering such situations, a procedure for earthquake response monitoring and structural damage 
estimation of existing high-rise buildings are required to verify their necessity of seismic retrofit 
before earthquakes and to evaluate their safety and usability quickly after the earthquake. Many 
high-rise buildings will suffer severe shaking in the same time during coming large earthquakes in 
Japan, professional engineers for damage inspection will be seriously shorthanded. In the present 
paper, structural monitoring and damage detection procedure will be discussed, using fiber optic 
sensors for static and dynamic axial deformation of columns of steel high-rise buildings. The 
long-term monitoring is done for the E-defense specimen and an actual high-rise building during their 
construction and demolition. Static deformation of columns shows the change of building weight, and 
dynamic axial deformation of columns shows natural period of the structure. Thus the structural 
stiffness and its change are precisely evaluated through the observed results. Log-term stability of the 
fiber optic sensor is suitable for structural monitoring, however, the correction of thermal strain is 
strictly required as shown in the later section. 



2. FIBER OPTIC SENSOR 
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Static and dynamic column axial deformation was monitored by SOFO system with fiber optic sensors 
(Mikami et al., 2006). Outline of the sensor and installation on the column of the specimen is shown in 
Figure 1. Sensors with gauge length of 300 mm, not a local strain gauge, were selected and installed at 
middle position of the columns to measure averaged axial deformation. The sensor consists of two 
optical fibers as shown in Figure 1(a) to cancel the effect of environmental temperature. As the result, 
the sensor has accuracy with a resolution of 2.0 micrometers in static displacement, and 0.01 
micrometers in dynamic displacement within the frequency range under 1 kHz. 
 
Thermal effect of sensors were corrected by the sensor itself, however the thermal strain of steel 
column should be properly corrected using observed temperature of the column. The sensors were 
mounted by bonding L-figure steel fixtures (brackets) supporting both ends to the surface of the 
column. These brackets at both ends of the sensors were fixed with the figure L facing the same 
direction because the effect of the thermal strain of these brackets on measurement results was not 
ignorable. 
 
Static column axial deformation was measured during construction or demolition of the structure with 
the 10 minute intervals. Dynamic axial deformation is also measured by the same sensors and digital 
type data recorder was used with 100Hz sampling. 
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Figure 1. Fiber optic sensor and installation on the steel column 
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3. HIGH-RISE BUILDING SPECIMEN FOR E-DEFENSE SHAKING TABLE EXPERIMENT 
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3.1. Full-scaled high-rise building model for E-defense subjected to long-period ground shaking 
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Verification of the methods and sensors was done on a full-scaled steel framed high-rise building 
specimen for E-defense shaking table experiment, which was damaged by long-period predominant 
earthquake shaking. The objective of the shaking table experiment is to develop damage reduction 
measure of high-rise buildings in the 1970s for long-period ground motions. Figure 2 shows the 
outline of the test structure (Nagae et al., 2009). The structure is modeled after a high-rise building of 
21 stories with height of 80 meters and is showing general feature of high-rise buildings in Japan in 
the 1970s. The 1st to 4th stories of the structure are actual size with realistic details, and upper floors 
are concentrated into three masses supported by rubber bearings. Averaged story stiffness and inelastic 
characteristics are modeled by steel dampers. Total weight of the structure is approximately 10,000 kN 
and the 1st natural period is designed as 2.4 s. As the structure has few non-structural members, it is 
suitable for investigating structural monitoring and damage detection procedure.  
 
Figure 2 also shows the location of main acceleration sensors and fiber optic sensors. Static column 
axial deformation was measured at two columns of each story and dynamic deformation was measured 
using totally eight sensors at both sides of two columns at the 1st and 2nd stories as shown in Figure 2. 
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Figure 2. Outline of E-defense high-rise building specimen and location of fiber optic sensors 
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3.2. Static column deformation during construction of test building 
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Figure 3 shows change of axial deformation of the center column of the 2nd story during construction. 
Observation had been done on each 10 minutes and observed deformation is shown as a function of 
temperature. The sensor is designed to cancel out its own thermal effect, but the steel column and 
fixing brackets deform according to their temperature. Thus the observed results include the apparent 
linear coefficient of thermal expansion which are shown as slanted lines in Figure 3. Gradient of lines 
are approximately 0.6 x 10-5/centi degree, which is roughly half of the coefficient of thermal expansion 
of general steel material. It is clearly observed in the figure 3 that the axial deformation of column is 
measured as degradation of the slanted lines. After correction of thermal strain using observed 
apparent coefficient of thermal expansion, Figure 4 shows clear and stable tendency of axial 
deformation by installation of the 6th and 7th floor of approximately 1,900 kN.  
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Figure 3. Static column axial deformation during construction 
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Figure 4. Static column axial deformation according to increasing weight of floor slabs 
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3.3. Dynamic column deformation during strong motion shaking 
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The sensors used for the research are capable of measuring dynamic displacement and expected to be 
available for evaluating the integrity of and damage to structures through the dynamic characteristics 
of buildings and their changes. During dynamic loading, totally eight sensors were installed at both 
sides of two columns at the 1st and 2nd stories as shown in Figure 2. 
 
Figure 5 shows axial and bending deformation subjected to long-period predominant seismic shaking 
by calculating sum and difference of observed dynamic deformation respectively from two sensors 
attached on the both side of columns. The sum waveforms of corner columns of the 1st and 2nd story 
show clear change at the time of damage occurred (approx. 90 – 100 seconds from the start of 
shaking). Fourier spectra of the difference waveform show natural frequency peaks up to higher 
modes, however the spectra of the sum waveform only have the 1st natural frequency peak. This 
character may be caused that the axial stress of columns in lower story is influenced by the 
overturning moment of the 1st mode, and influenced by the change of stress distribution of the 
damaged structure. Detailed investigation will be required with dynamic response analysis of the 
frame. 
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Figure 5. Dynamic column bending deformation and axial deformation during shaking 
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4. ACTUAL HIGH-RISE BUILDING DURING DEMOLITION 
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4.1. Outline of building and demolition process 
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Column axial deformation of a high-rise steel building was continuously observed during demolition 
by use of fiber optic sensors to evaluate removed weight of upper floors. Installation, observation and 
data processing method of SOFO type fiber optic sensor were verified especially focused on correction 
of temperature-dependent effect on strain of steel structure. Figure 6 shows outline of the building, 
which was located in Nagoya city, 25 floors steel structure with 90m high, constructed in 1973. The 1st 
natural periods are evaluated as 2.47s (span direction) and 2.44s (longitudinal) in structural design 
process. Observed natural periods after removal of interior were 0.43Hz (2.3s) and 0.46Hz (2.2s). 
Vibration observation was continuously performed by use of strong motion accelerographs. 

 

 (c) 柱の両面の変形記録の和（左）とフーリエスペクトル（右） 
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(a) Column bending deformation by difference of both side sensors 

(b) Column axial deformation by sum of both side sensors 



Figure 6 also shows the demolition process in approximately ten months. First the interior walls and 
materials were removed and then the structure was demolished in four months, which corresponds one 
floor per 4.4 days. Static measurement was done from February to July, and dynamic measurements 
were performed in eight times. 
 
Totally nine fiber optic sensors were installed at steel column in the fourth floor of the building as 
shown in Figure 7. The fourth floor was the bottom of the steel framed superstructure, and evaluation 
of static and dynamic deformation of the structure was considered for sensor location in the floor. 
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Figure 6. Otline of building and demolition schedule 
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Figure 7. Setup of fiber optic sensors on steel columns of the fourth floor 

Blank line 11 pt 
4.2. Static column deformation during demolition of the building 
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Demolition of the building was done from February to July, thus the effect of thermal strain was 
observed in daily fluctuation and increasing temperature with the season. Figure 8 shows change of 
axial deformation of IC-W-M sensor (inner column of the 4th story, facing west and middle height of 
the column) during demolition. Observation had been done in each 10 minutes and observed 
deformation is shown as a function of temperature. As the apparent linear coefficients of thermal 
expansion are different in each demolition stage, the thermal strain correction was done using 
observed coefficient. Observed results before demolition give the most stable and reliable coefficient. 
 
Figure 9 shows change of loads of superstructure evaluated by corrected column deformation of the 
IC-W-M column. Difference is observed as evaluation method of correction coefficient, however the 
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deformation (extension) of columns in the real structure is clearly shown. 
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Figure 8. Evaluation of correction coefficient considering thermal strain of column IC-W-M during demolition 
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Figure 9. Corrected axial deformation of column IC-W-M during demolition by decreasing axial force 
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4.3. Dynamic column deformation 
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Dynamic observation of column axial deformation were tried to verify that the observation is effective 
for evaluation of natural period and vibration characteristics of the structure. The observed time 
histories of column axial deformation are shown in Figure 10, comparing with Fourier spectra and 
vibration response of the building. Figure 11 shows spectral characteristics of observed data in two 
different stage of demolition. These figures show that the observed column axial deformation is 
sufficiently effective for evaluating dynamic properties of the building, and is not fully disturbed 
under construction noise. Figure 12 shows the change of evaluated natural frequency during 
demolition of the building. It is clearly shown that the dynamic observation by fiber optic sensor 
corresponds to the spectral results of seismometers. 
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Figure 10. Observed dynamic column deformation time histories and their Fourier Spectra 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Observed dynamic column deformation 
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Figure 12. Change of natural frequency detected by fiber optic sensors comparing with those by acc. sensors 
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5. CONCLUSION 
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In this paper, fiber optic sensors were used for detection of static and dynamic column axial 
deformation. For the E-defense specimen, static deformation of columns was properly measured 
showing the change of building weight, which is effective data for the evaluation of structural stiffness. 
Dynamic deformation measurement was also tried during earthquake shaking considering axial and 
bending deformation. It was observed that the dynamic axial deformation of columns shows possible 
information on structural damage as change of stress distribution in the structure. 
 
Column axial deformation of a high-rise steel building was continuously observed during demolition 
by use of fiber optic sensors to evaluate removed weight of upper floors. Installation, observation and 
data processing method of fiber optic sensors were verified in an actual building especially focused on 
correction of temperature-dependent effect on strain of steel structure. Accuracy of observed axis 
deformation was improved by evaluation of the apparent coefficient of thermal expansion which 
includes thermal deformation of sensor mounts. Evaluated weight of structures was verified by the 
actual weight of removed structures and detailed estimation by structural data. Accurate observation of 
weight of actual structure is important for structural health monitoring with natural frequency of the 
building. 
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