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SUMMARY:  

This paper, deals with detecting and identifying unknown scatters (e.g., obstacles) in an elastic background solid 

through the use of elastic illuminating waves. In this regards, the Linear Sampling Method (LSM) for the 

reconstruction of the underground obstacles from near-field surface seismic measurements in the time domain is 

explained. The LSM is an effective approach to image the geometrical features of unknown targets. Although 

this method has been used in inverse acoustics problems dealing with far-field wave patterns in full space 

domains, there is no specific attempt to apply this method to the interpretation of near-field elastic wave forms in 

the time domain. It is found that the linear sampling method in the time domain working with a frequency band, 

improves the quality of the reconstruction of the obstacles compared to the frequency domain methods. 
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1. INTRODUCTION 
 

Inverse scattering problems deals with detecting and identifying, the reconstruction of unknown 

scatters (e.g., obstacles) in a background medium using measurement data of the scattered wave-fields, 

have been widely studied over the last few decades owing to their applications in a broad range of 

scientific and engineering disciplines such as seismology, non-destructive evaluation (NDE), medical 

diagnosis geophysics or submarine detection. We are interested in the non-destructive testing 

application where data such as the location and the nature of the obstacle are wanted, given a 

minimum number of observations. These inverse scattering problems have led to the development of 

the so-called qualitative methods for non-iterative obstacle reconstruction from far/near measurements 

of the scattered field. These methods provide a powerful alternative to the ordinary optimization 

approaches. These techniques can be classified as probe or sampling methods such as linear sampling 

method (LSM), topological sensitivity (TS), factorization method, the probe method, and point source 

method. The LSM is introduced in the inverse scattering literature by Colton and co-workers (1992, 

1996). Although the LSM has gained remarkable attention in inverse scattering theory dealing with 

wave patterns in the frequency domain, little attention has been devoted to its application for near-field 

elastic wave forms in time domain. This is especially the case for the problems arising in the half-

space domains during active seismic imaging of underground unknown scatters. As the aperture 

shrinks (e.g., the half space), the identification of the obstacle in time domain yields significantly 

better reconstructions by using continuum frequencies. The method aims at reconstructing the shape of 

an object from the knowledge of the multi time dependent-view data matrix Us collected on the 

measurement domain Γ by means of Nr receiving and Ns transmitting probes. Such a goal is pursued 

by partitioning the investigated region Ω into an arbitrary grid of sampling points (z) and solving the 

linear matrix equation in each sampling point. 

 



 

2. DIRECT SCATTERING PROBLEM 
 

A two-dimensional scattering of elastic waves by a bounded buried cavity D with boundary D as 

shown in Fig.2.1 is considered. With reference to a Cartesian coordinate system 21, , the half space 

 0),( 221   is characterized by the Lame‟s constants λ and μ, mass density ρ. The material 

response is assumed to be linear elastodynamic. 

 

The direct scattering problem investigates wave propagation in the exterior domain Ω and finding the 

scattered field us(x, t) that satisfies the homogeneous Navier's equation (Achenbach, 1984) 
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and the boundary conditions 
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In the above equation, u
tk
 and u

ik
 are total displacement in the presence of scatterer and displacement 

in the absence of scatterer. t
tk
 indicates the traction vector whose value on the boundary of scatterer is 

zero, if the obstacle is cavity. The scattered field should also satisfy the Sommerfield radiation 

condition (Graff, 1991). 
 

A two-dimensional spectral finite element model with absorbing boundary conditions has been 

developed to generate the synthetic data which is able to simulate wave scattering propagation in solid 
half-space. Combining excellent characteristics of classical finite element method (FEM) and spectral 

elements, spectral finite element method (SFEM) not only exhibits flexibility and ease of formulation, 

which is a FEM character, but also exploiting high order spectral elements leads to a significant 

superiority over FEM from the viewpoints of solution precision and computation costs (Komatitsch, 
1998, 1999, 2000). Orthogonal basis functions are used as approximation functions and such selection 

of approximation functions in conjunction with specific numerical integrating schemes used in SFEM, 

leads to a diagonal mass matrix which is a great advantage over FEM. Fourier series, Chebyshev and 
Legendre polynomials are the commonly used basis functions. SFEM plays an important role in solving 

elastic wave propagation problems (Khaji et al, 2012) 

 

The computer code based on SFEM, provides us the scattered displacement in time stepping t  
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where i , j  are receivers/point sources location, Nr and Ns are the number of receiver and source 

respectively. Nt is the number of time stepping and corresponds the final time recording. 
 

 

 
 

 

 



 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

Figure 2.1. Excitation of an underground cavity in the half-space. 

 

 

3. INVERSE SCATTERING PROBLEM  

 

In this section we introduce the major notions and notations of the linear sampling method. It is 
assumed that a set of measurements of near field scattering pattern of incident point sources is 

available, each of these measurements corresponding to illumination of the medium. This problem is 

commonly referred in the literature as the „inverse scattering‟ problem. 
 

3.1. LINEAR SAMPLING METHOD 

 

The LSM is an inverse scattering strategy to reconstruct the shape of an unknown scatterer from multi-
view data collected from measurements of casual waves (Cakoni et al, 2006, 2011). This goal is 

pursued by partitioning the investigated region into an arbitrary grid of sampling points and by solving 

in each of them a linear equation. In particular, the idea of the method is to look for a superposition of 
the scattered fields (us) that, for each sampling point, matches with a prescribed radiating solution to 

the homogeneous Navier's equation in   due to a point source acting at z in the direction of d. The 
statement of the method is that the L

2
 norm of the solution to this problem is significantly larger 

outside the scattering object than inside. The mathematical formulation of the LSM relies on the layer 

potentials and operators. With respect to an arbitrary grid of points (z) that samples Ω, the LSM 
requires to solve in each sampling point the matrix equation (Nintcheu Fata, 2004) 

 

1.,,,   ddgN zdzd                                                                                              (3.1) 

 

where Nd g is the scattered field associated with the incident field and Nd is the near field operator. 
Time domain version of linear sampling method has a convolution structure and corresponds to the 

scattered fields (casual data) 
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Equation (3.2) can be formulated as near field operator equation of the form 
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In Eq. (3.1),  ,z  is the rt NN  dimensional vector contains the field radiated at the Nr receiving 

positions on by an elementary source located in z ∈ Ω, and has a convolution structure (Duhamel 

integral) 
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  is excitation force at sampling points and G denotes the fundamental solution for the 

wave equation (Chen et al, 2010). In the above equation,   corresponds to time shift and depends on 

the distance between the location of source and receiver. Therefore, the time shift for each sampling 

points can be changed. In fact, this parameter is related to the velocity of wave propagation in half-

space elastic medium. With the best choice of   , reconstruction of the obstacle can be improved.  

 

The objective is to find the vector density )( 1

2

,,  Lg dz   as a solution to the near-field integral 

equation of the first kind whose L
2
 (Γ1)-norm (i.e., the “energy”) can be used as an indicator function 

for    (Catapano et al, 2007). Since this norm is bounded inside D, it blows up on D  and can be 

made arbitrarily large outside D. In other words, the overall energy of these sampling points is an 
indicator of the obstacle, as it will achieve large values in sampling points external to the obstacle and 

lower values elsewhere (Aramini et al, 2010, 2011). 

 

3.2. REGULARIZATION  

 

In general, there is a fundamental difference between the forward and the inverse problems. Although 
the forward scattering problem is linear and well-posed, the inverse scattering problem is non-linear 

and ill-posed or improperly-posed in the sense of Hadamard. In his lectures, Hadamard believed that 

mathematical models of physical phenomena has to be well-posed if  

1. A solution of the problem exists (existence). 

2. The solution is unique (uniqueness). 

3. The solution depends continuously on the data (stability). 

 

Problems that are not well-posed in the sense of Hadamard are termed ill-posed. The LSM can be 
considered as a Fredholm integral equation of the first kind with an analytical kernel function, which is 

severely ill-posed or improperly-posed in the sense of Hadamard (Kirsch, 2011). The integral 

operators are compact. Hence, a small error in input data causes a large error in the shape 

reconstruction process which may lead to instability. Consequently, as an approximation to the 
integral operator, the interpolation matrix Nd is severely ill-conditioned. The accurate and stable 

solution of Equation (3.2) is very important for obtaining physically meaningful numerical results. 

Regularization methods are among the most popular and successful methods for solving stably and 
accurately ill-conditioned matrix equations. In our computations, we use the Tikhonov regularization 

to solve the matrix equation arising from the LSM discretization. Regularized solution of (3.1) can be 

found by minimizing the Tikhonov functional (Colton et al, 1997, 2000) 
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where 0  is known as the Tikhonov regularization parameter. In our computations, we choose λ by 

the Morozov principle and is computed as 



 

 
2

,

*

1
22

222

)(
)( 




 







 z

M

i i

i Uf                                                                                         (3.6) 

 

In equation (3.6), δ is the error of operator Nd which is computed using   comp

dd NN . To solve 

Equation (3.1), the singular value decomposition of Nd  is computed as Nd =U S V
*
, where U and V are 

(Nt  Ns ) × (Nt  Nr ) unitary matrices, V
*
 is the transpose of V , and S is a diagonal matrix with iiiS  . 

With reference to (3.5), the norm of a Tikhonov-regularized solution dzg ,,   to (3.1), with 

regularization parameter λ is accordingly computed as 
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With the plot of dzg ,,1    as indicator function, the support of the unknown scatterer can be 

determined. 

 

 

 

4. NUMERICAL EXAMPLES 

 

This section is devoted to presenting numerical results demonstrating the capability of the time-
domain linear sampling method to provide good reconstruction of an underground cavity in the half-

space with data available on the free surface. The  force  is  assumed  to  vary  in  time  as  a  Ricker 

wavelet whose equation is 
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where ts is the time at which the maximum occurs, a is the amplitude, and corresponds to the dominant  

period of the wavelet. For this study, t0 was set to 0.1 which corresponds to a dominant frequency of 

the wavelet near 14.5 Hz. The function f (t) and its spectrum are depicted in Fig. 4.1. 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 
Figure 4.1. (a) Ricker wavelet, (b) The Fourier transform of the Ricker wavelet. 
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4.1. RECONSTRUCTION OF A SINGLE-CAVITY  

 
The numerical example deals with the elastic-wave imaging of a rectangular void embedded in a half-

space solid as depicted in Fig. 4.2. With reference to the Cartesian frame, {O; x, y}, the cavity is 

centred at (2000, 1000). The location of the sources and measurements location are on the free surface 
and compatible. The isotropic elastic half-space medium has a P-wave velocity of 3200 m/s, a S-wave 

velocity of 1847.5 m/s, a mass density of 2200 kg/m
3
, and is modelled as a domain of size 4000 × 2000 

m
2 

in plane strain conditions. In the simulation, the cavity is exposed sequentially using 25 source 
points similar to Lamb problem. From each source point, the void is illuminated in sequence using 

Ricker forces acting in two perpendicular directions (x, y). In all subsequent simulation, the total time 

of response to be calculated is 2 sec and the time step used in this experiment is 001.0t . For every 

point source in Lamb and Garvin problem, synthetic data is obtained using the spectral finite element 

method. For the forward numerical solution, we use a mesh of 50 × 25 elements, with a polynomial 
approximation of order N = 5. Fig. 4.3 (a), typically displays the total vertical displacement in the 

presence of cavity, in receiver located at (800, 2000) due to source point at (1760, 2000) in y-

direction. Similarly, this process is done for perfect model (i.e., without cavity). When the differences 

of two signals are calculated, the influence of the cavity comes out, as shown in Fig. 4.3 (b). These 
differential waveforms as a forward solution will be used in the time version of linear sampling 

method to detect an existing cavity in the half-space medium. 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 
Figure 4.2. Reference geometry and investigated region of the half-space imaging problem and wave profiles at 

time (a) 0.3sec (b) 0.7sec in the Lamb‟s problem. 

 

 

 

 
 

 

 
 

 

 
 

 
 

Figure 4.3. The time histories of vertical displacement in receiver located at (800, 2000) for (a) total and (b) 

scattered response. 
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In this numerical example, M = 5000 singular values for evaluating the Equation (3.6) are used. Figure 

4.4 shows the decay of first 300 singular values of the discrete near-field operator Nd. The number of 

singular values which are used in time version of linear sampling method is more than frequency 

version of LSM. In fact, intensity variation of singular values in frequency domain is much more than 
time domain.  

    

In our numerical example, we consider sec20.0 . The appropriate choice of time shift plays an 

important role in our reconstructions. With synthetic data calculated using spectral finite element, 

LSM equation is solved for the density dzg ,,  at a 16 × 12 grid of sampling points, uniformly spaced 

over a 1200 × 800 rectangular testing region. In the simulation, a fictitious Ricker point source with 
polarization d=(0,1)

T
, is determined at every sampling point z. Fig. 4.5 illustrates the variation of  

)(,, 2
/1

 Ldzg   as a function of sampling point, time shift and source polarization obtained using (3.6) 

with λ= 9.53×10
-7

. As one expects, the value of 
)(,, 2

/1
 Ldzg  inside the cavity is large. The dashed 

line indicates the true boundary of rectangular cavity. 
 

 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

Figure 4.4. The decay of first 300 singular values of the discrete near-field operator Nd . 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

Figure 4.5. Contour plot of the indicator function 
)(,, 2

/1
 Ldzg  for the identification of a rectangular cavity 

using two axial point source. 



 

 

5. CONCLUSIONS 

 
In this study, the problem of reconstructing two-dimensional cavity embedded in a half-space solid 

from near-field, surface seismic observations is investigated by means of the linear sampling method 

in time domain that is rooted in far-field acoustics and electromagnetic. We have shown that it is 

possible to exploit the LSM in the framework of time domain to obtain a qualitative reconstruction of 
unknown scatterers with a limited number of receivers/transmitters on the free surface of half-space 

domain. In this case, the time domain version of linear sampling method provides satisfactory 

reconstructions of the obstacles due to working with a frequency band.  
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