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SUMMARY:  
Self-supporting stacks both RCC and Steel, plays an important role in dispersion of flue gases to the atmosphere 
in power, petrochemical and steel industry. The present state of the art for design of such structure is still 
restricted to analyzing the same as fixed base cantilever though a number of researchers have argued that the 
response varies considerably when foundation compliance is taken into cognizance. In the present paper a 
mathematical model based on modal analysis considering dynamic soil structure interaction has been proposed 
to cater to the effect of foundation compliance and study its effect on the overall response. The model considers 
both multi flue and tapering stacks. The results are also compared with standard analysis package like STAAD 
Pro to check on the variations.  
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1. INTRODUCTION 
 
With environmental legislations getting tougher every day, reinforced concrete chimneys that are 
mostly used to discharge effluent gases to atmosphere from various industries are getting 
progressively taller to reduce concentration of pollution at ground level. This is thus posing new 
challenge to structural engineers to design them safely against the demanding natural forces like wind, 
earthquake etc whose effects increase significantly with height. In the process of design of such tall 
chimneys, till recent past, the practice has been to design the stack considering it to be fixed at 
foundation level, ignoring effect of foundation compliance a shown in Fig. 1.1. It is only recently a 
number of chimneys have been built (H>220m) in various power plants and has created a significant 
debate among chimney analysts and designer as to whether to consider dynamic soil structure 
interaction (DSSI) for dynamic analysis for such chimneys. 
 

 
Figure 1.1. A typical Multi-flue RCC stack 

 
 



 

A number of researchers have advocated consideration of DSSI while performing the dynamic 
analysis of chimney. Ghosh and Batavyal (1985), Luco (1986), Navarro (1992), Sadeghpour & 
Chowdhury (2008), Jaya et al (2009), Chowdhury (2010) have all suggested to consider DSSI for 
chimney design, each proposing different techniques to be adapted for dynamic analysis of such tall 
RCC chimneys. All researchers have concluded that fixed base moment and shear of chimney varies 
considerably when effect of foundation compliance is considered in the overall analysis. 
 
Latest IS-1893(2005) Part IV has now provided allowance for DSSI analysis by furnishing 
translational and rocking spring of soil-foundation system based on Hall (1967), however the modus 
operandi of analysis is left open to the discretion of user. Though IS code has furnished coefficients Dv 
and Dm to cater to the DSSI effect, however it appears that time period values for which coefficient 
Sa/g is to be considered is fixed base time period even for DSSI case and this is fallacious. As time 
period will get modified due to foundation soil springs the Sa/g values should correspond to this 
modified time period and not the fixed base case.  
 
 
2. PROPOSED METHOD 
 
We start with analysis of a multi flue chimney of uniform cross section as shown in Fig. 1.1. Since 
outer core of a multi-flue chimney (usually termed as wind shield) is almost of uniform cross section 
or with very limited variation of cross sectional area along its height, we consider it as a cantilever 
beam fixed at base of uniform cross section. Free vibration equation of such beam is given by the 
expression (Hurty and Rubenstein 1967) in Eqn. 2.1. 
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Based on Eqn. 2.2 and separation of variable technique, partial differential equation vide Eqn. 2.1 can 
be separated into two linear differential equation and one of which is given in Eqn. 2.3. The generic 
solution to this equation is given by Eqn. 2.4. Imposing the four boundary conditions given in Eqn. 
2.5, we have the shape function solution as in Eqn. 2.6. 
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Here m is the mode number 1, 2, 3 etc. Based on above it can be shown that the stiffness and mass 
matrix of such multi-flue stack can be expressed as (Meirovitch, 1967) in Eqn. 2.8 and Eqn. 2.9 
respectively.   
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Considering the shape function as in Eqn. 2.10 and its double derivative Eqn. 2.11,  
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Before performing integration to find out kij and mij, we change the above to generalized co-ordinate 
by considering, 

H
z

=ξ  when 
H
dzd =ξ  and as 0,0 →→ ξz  and as 1, →→ ξHz based on above we can 

now express the double derivative as  
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Thus stiffness and mass of the system can now be given by Eqn. 2.13 and Eqn. 2.14 respectively. 
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where i=j=1,2,3,………m.  
 
For most of the chimneys it is found that first three modes are sufficient to predict the dynamic 
response, as modal mass participation is almost 100% by this. Thus for first three modes, stiffness 
matrix is given by 
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and mass matrix  is given by 
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Integral functions in Eqns. 2.15 and 2.16 can very easily be solved based on Simpson’s 1/3rd rule 
between limits 1 to 0 when we have stiffness and mass matrix is expressed as 
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Converting above into standard eigen-value form of λφAφ =  and applying the generalized Jacobi 
technique (Bathe & Wilson, 1980) we have (Chowdhury, 2008) 
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The Eigen vectors are given as in Eqn. 2.20 and are shown in Fig. 2.1.    
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Here W total weight of chimney including all its appurtenance including 50 % of Live load during 
operation, I moment of inertia of the chimney cross section at base of the shell (i.e. top of chimney 
raft), E modulus of elasticity of the stack material, g acceleration due to gravity @ 9.81 m/sec2. 
 
 
2.1 Effect of Foundation Compliance 
 
To assess the phenomenon we start with the model as proposed by Veletsos (1974) and Wolf (1985) as 
shown in Fig. 2.2. 
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Figure 2.1. First three mode shapes of the chimney 

 
Figure 2.2. Mathematical Model of an oscillator 

considering the effect of DSSI 
 
Based on the above mathematical model Veletsos (1974) has proposed the expression 
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Here  Te   Equivalent Time period of the structure considering DSSI 
 T   Fixed based time period of the structure 
  ks   Fixed based stiffness of the structure 
  kx   Lateral stiffness of the soil foundation system 
  kθ   Rocking stiffness of the soil foundation system 
 
The foundation in this case is considered as a mass-less rigid footing resting on a homogenous elastic 
half-space. Eqn. 2.22 is an established expression in the realms of DSSI analysis and has been 
recommended by FEMA (2000), NEHRP etc in USA and is routinely used to cater to the DSSI effect 
of any structure under seismic load. For seismic analysis, usual procedure is to determine the effective 
time period based on Eqn. 2.22 when this would mostly show an elongation. This mostly results in an 
attenuation in seismic response, giving rise to the popular belief that for most cases DSSI reduces the 
response and thus designing a structure as fixed base model gives a conservative result (not to 
overlook the fact that the analysis thus conveniently becomes much simpler as the effect of soil is 
ignored from the analysis). Before we try to re- asses the above concept we modify Eqn. 2.22 as 
shown here after. 
 
Squaring Eqn. 2.22 and considering KMT /2π= we have Eqn. 2.23. Here ke  is equivalent stiffness 
of the structure considering the DSSI effect. Other nomenclatures are as shown in Fig. 2.3. Now 
considering MK /=ω , Eqn. 2.23 can further be expressed as Eqn. 2.24. 
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Eqn. 2.24 has also been derived by Kramer (2003) for seismic force and Wolf (1985) who had further 
extended this to vertical mode also and has shown that DSSI coupling of this nature is valid for frames 
subjected to harmonic loads too. On careful examination of Eqn. 2.24 it shows that it is the classical 
expression derived by Dunkerley (1894) for determining the natural frequency of a vibrating shaft 
mounted with a number of discs. Wherein Dunkerley showed that on determination of the frequency 
of each of the individual discs in isolation the coupled frequency can be determined by the expression  
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Here n is the number of discs mounted on the shaft. Based on Dunkerley’s principle Fig. 2.2 can be 
broken down into three separate systems as shown in Fig. 2.3. 
 

 
 

Figure 2.3. Formulation of chimney - considering inertial effect of the foundation 
 
It is apparent from Fig. 2.3 that the coupled single degree oscillator can be broken down into three 
systems and on finding out the individual frequencies of each of the system the coupled natural 
frequency may be determined as per Eqn. 2.23. Multiplying Eqn. 2.23 by the factor g, acceleration due 
to gravity we have 
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Eqn. 2.27 shows that displacement of three separate systems can be superimposed to arrive at the total 
displacement of the system provided of course the system is linear. Concepts as furnished in Fig. 2.3 
and Eqn. 2.27 shall be used subsequently to derive a mathematical model and do a parametric study 
for DSSI under earthquake force. Extending the concept as shown in Fig. 2.2, mathematical model 
perceived for considering the inertial effect of foundation is as shown in Fig. 2.3. Usually the inertial 
effect of foundation is ignored in the analysis. Following Dunkerley’s principle and Fig. 2.3 we have 
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2.2 Seismic Modal Analysis of Chimney  
 
For seismic analysis, we again start with Eqn. 2.27 i.e. θδδδδ ++= xse . In terms of modal mass 
analysis this can be expressed as per Clough (2003) as 
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Thus in terms of code Eqn. 2.30 can be expressed as per IS 1893 (Part 1):2002 as given in Eqn. 2.31 
which can be further expressed as Eqn. 2.32. 
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In Eqn. 2.32 it is observed that the terms within the second parenthesis are dimensionless terms, and 
when kx and kθ ∞→ it converges to the fixed base response of the chimney in fundamental mode. Thus 
from Eqn. 2.32 we can clearly say that due to soil-foundation effect the fixed base response gets 
modified by the factor within the parenthesis which is nothing but the Amplification Factor (AF) due 
to DSSI (Chowdhury & Singh, 2010) given in Eqn. 2.33. For multi degree freedom system the 
amplification factor can be expressed as (Chowdhury & Dasgupta, 2011) in Eqn. 2.34.   
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Here [I] an identity matrix having non diagonal terms as zero, Sasi modal spectral acceleration due to 
the eigen values [λι] as obtained from Eqn. 2.19, [λxι]= ( )isx mmK +0 ,and [λθι]= ( )2

0 iis hmJK +θ . 
Here msi  diagonal term of the mass matrix as shown in Eq. 2.18 for the ith mode 
          m0 mass of the circular raft foundation supporting the chimney 
          J0 mass moment of inertia of the circular raft (0.25m0r2) 
          hi centroid height of the mass per mode from foundation top 

Kx  Frequency independent translational spring for the circular foundation as )2/(8 ν−Gr  

Kθ  Frequency independent rocking spring for the circular foundation as )]1(3/[8 3 ν−Gr  
Cx Translational radiation damping for the circular foundation expressed as 

2)]2/(6.4[ rVsρν−  
Cθ Translational radiation damping for the circular foundation expressed as 

4)]1/(4.0[ rVsρν−  
Saxi, Saθi Spectral accelerations due to the eigen values [λxι],[λθι] scaled up/down due to the 
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G Dynamic Shear modulus of soil @ ρVs
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ρ Mass density of soil 
Vs Shear wave velocity of soil 
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2.3 Calculation of Dynamic Amplitude, Moments and Shears 
 
In terms of response spectrum analysis displacement Sd is given by, 2/ωad SS = . In terms of codal 
formulation, considering DSSI we may express it as 
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For an element of length dz, above can be expressed as 
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Integration of mass participation factor within limits 1 to 0 for the first three modes gives κi as 0.569, 
0.427 and 0.308 and height of modal CG hi as 0.726H, 0.209H and 0.128H respectively for first three 
modes. Now considering,

R
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=β , a code factor, we can write the time dependent function of 

displacement as 
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From Eqn. 2.20 observing that cross modal Eigen vector terms having negligible effect, Eqn. 2.38 can 
be rewritten as Eqn. 2.39. The bending moment and shear force along stack including the effect of 
DSSI can be expressed as in Eqns. 2.40 and 2.41. Where Iz moment of inertia of the chimney cross 
section at a height z from bottom and could be varying in case the chimney is tapered. 
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3. RESULTS AND DISCUSSIONS 
 
To evaluate the proposed method a real life chimney having following data is analyzed and presented. 
 
Design Data 
Height of chimney 278.825m, Inside diameter of chimney at bottom 29.9m, Inside diameter at top 17 
m; Shell thickness at bottom 800 mm (Constant up to 30 m height from base), Shell thickness at top 
500mm (Varying linearly from 30m to 175m and then constant to the top); Seismic zone is III as per 
IS-1893(2002), zone factor (Z) 0.16, importance factor (I) 1.75, response reduction factor (R) 3.0; 
Grade of concrete M40 for superstructure and M30 for substructure, total weight of shell including DL 
of internal and external platform and 50% of Live load 460905 kN; Outside Radius of base raft 22.5m; 
bearing capacity of soil 550 kN/m2.; dynamic shear modulus of soil 590000 kN/m2; density of soil 
20kN/m3, Poisson’s ratio 0.4, damping ratio of concrete considered 3%, weight of foundation 145350 
kN. 
 
Based on above design data it is apparent that DSSI amplifies the dynamic response of tall chimneys 
and will have more profound effect as the strength of soil reduces. Irrespective of the chimney having 
taper or otherwise the geometry has little effect on the global time period of the system where the 
overall weight and the base moment of inertia finally govern(refer time period based on proposed 



 

method and numerical analysis carried out in STAAD considering variation in Table 3.1. The 
amplification factor due to DSSI though high for higher modes (compared to first mode) yet lower 
value of modal participation factor κι and reduced centroidal height (hi) attenuates the higher mode 
response considerably. As such the fundamental mode finally dominates the overall response. Many 
codes (for instance IS-1893(2005) Part IV) recommends chimney to be analyzed based on first mode 
only which is not correct, for higher mode participation do have significant effect irrespective of the 
chimney being considered as a fixed base or otherwise. Finally for the present case the chimney has 
been resting on rock having allowable bearing capacity of 550 kN/m2 and shear wave velocity Vs 537 
m/s, which is slightly less than 600 m/s – “the cut off mark” when foundations can usually be 
considered as fixed. Even with such high value of Vs the amplification due to DSSI is significant and it 
would have been conceptually wrong to assume the foundation acting as a fixed based one. In a 
nutshell, this reflects the importance of considering dynamic soil structure interaction effect for 
analysis of such tall chimneys under seismic force. The bending moment and shear force diagram of 
the chimney considering the effect of DSSI and fixed based condition are shown in Figs. 3.1 to 3.4. 
 

Table 3.1. Salient features of analysis  
 Mode 

1 2 3 
Fixed Base time period Chimney (Proposed ) 3.27 0.53 0.19
Fixed Base time period Chimney based on STAAD 3.37 0.67 0.24 
Time period foundation (translation) 0.246 0.191 0.192 
Time period foundation (rocking) 2.173 0.458 0.286 
Damping ratio for chimney 3% 3% 3% 
Translational damping ratio of raft** 35% 44% 44% 
Rocking damping ratio of raft** 5.3% 6.6% 7.6%
Spectral accelerations of fixed base chimney, Sas 0.017g 0.11g 0.143g 
Spectral accelerations of foundation translation, Sax 0.05g 0.05g 0.05g 
Spectral accelerations of foundation rocking, Saθ 0.02g 0.109g 0.092g 
Amplification Factors (AF) for DSSI  effect 1.545 1.808 2.841 

** This includes 5% material damping of soil in translational & rocking mode 
 

 
Figure 3.1. Bending Moment diagram of chimney for 

first three modes considering DSSI 
 

 
Figure 3.2. Bending Moment diagram of chimney for 

DSSI versus fixed 
 

 
Figure 3.3. Shear force of chimney first three modes 

considering DSSI 

 
Figure 3.4. Shear force of chimney fixed base versus 

DSSI
 



 

4. CONCLUSION 
 
A comprehensive analytical technique is proposed herein that can take care of DSSI effect as well as 
higher mode participation for dynamic analysis of tall chimneys, and can very well be developed in a 
spread sheet. It does not require an elaborate FEM software as an analytical tool. The proposed 
method also highlights some of the improvements that IS code committee may consider for 
amelioration of design engineering for such chimneys. 
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