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SUMMARY:  

For both steel and RCC Bridges passing rivers or creeks, common practice in many countries is to provide 

concrete wells to support the bridge girders. For many bridges that are strategically important in terms of defense 

or trade, it is essential that they remain functional even after a strong earthquake hits the structure. The present 

state of the art for design of well foundation is still marred with a number of uncertainties where a simplistic 
pseudo static analysis of its response only prevails, though it is a well-known fact that  load from super structure, 

character of soil and its stiffness plays an important role in defining its dynamic characteristics. The present 

paper is thus an attempt to present a dynamic analysis model trying to cater to a number of such deficiencies as 

cited above and also provide a practical model (amenable to design office application) that can be used to 

estimate the pier, well and soil’s dynamic interaction 
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1. INTRODUCTION 

 

Well or caissons are very popular type of foundations deployed to support bridge girders and cross 
country pipelines over river crossings and ravines in India and many other countries. In many places 

these bridges are built in zones susceptible to moderate/strong earthquakes. Considering bridges are an 

important connection between two areas, it becomes essential that many of them remain under 
operations even after a strong earthquake, enabling relief team to quickly access the areas of maximum 

damage. Thus understanding the behavior of well foundations and pier under such seismic forces are 

of paramount importance to ensure operational safety of these bridges. 

 
Shown in Fig. 1.1 is a well foundation with bridge deck as installed in a river bed. Standard procedure 

for seismic analysis is the total lateral force coming from the bridge deck h .W is transferred to the top 

of the well as shear V=h.W and Moment as M=h.W.H. It is assumed that this force is resisted by the 
mobilized passive force of the soil on well steining such that a Factor of Safety (FOS) of 2-2.5 is 

ensured as a minimum, thus well foundation is usually assumed to be a rigid block subjected to 

nominal stress only. Major digression from reality in the above concept is that dynamic effect of soil 
and well foundation is completely ignored. It should be realized that seismic waves propagate through 

soil and excites the well foundation first. How much will this in turn excite the pier and top deck will 

depend upon relative stiffness of the well and its surrounding soil and interaction among them. 
Realistically, this is a classic structure-foundation system where Dynamic Soil Structure Interaction 

(DSSI) plays a crucial role in the overall response and should be taken into cognizance to arrive at 

overall response of the system. In the present paper a mathematical model for a well pier foundation is 

proposed considering the effect of DSSI that is amenable to design office practice. 
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Here Kp passive pressure of soil, s weight density of soil in kN/m
3
, L height and D is diameter of well. 



 
 

 

Figure 1.1. A Well foundation and pier supporting bridge deck 
 

Figure 2.1.  Mathematical model of 

well foundation with pier 

 

 

2. PROPOSED METHOD 

 
Shown in Fig. 2.1 is the mathematical model proposed for the pier –well system. In this model M is 

mass transmitted to the top bridge pier from the bridge deck, mp mass of the pier, mw mass of well 

foundation including sand fill if any, Kp stiffness of bridge pier, Kw stiffness of well foundation. 

Applying unit load successively at node 1, 2 and 3 we have flexibility matrices as given in Eqn. 2.1. 
 

   pww kkfkff 11,1,0 332211                        (2.1) 

 
By Dunkerley’s (1894) principle the equivalent frequency of the system can then be expressed as Eqn. 

2.2. Eqn. 2.2 on simplification gives Eqn. 2.3, which can be further expressed as Eqn. 2.4. 
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It may be observed that Eqn. 2.4 is similar to what has been proposed by Wolf (1988) for coupled 

frequency of soil-structure system for SDOF. The equivalent frequency of the pier-well system vides 

Eqn. 2.3 shows that the model can be broken down into individual systems as shown in Fig. 2.2. It is 
thus observed that if we can find out the fixed base natural frequency/time period of the individual 

system as shown in Fig. 2.2 and couple them based on Eqn. 2.4 we arrive at the equivalent natural 

frequency of the pier–well system. Eqn. 2.4 can be further expressed as Eqn. 2.5 and multiplying each 

term of Eqn. 2.5 by acceleration due to gravity g we get Eqn. 2.6.   
 

      wwpppewp KmmMKmMKmmM    (2.5) 

wpe       (2.6)  

 
Here, p and w are fixed base displacement of the pier and well respectively. Eqn. 2.6 in terms of 
modal response analysis can be expressed as Eqn. 2.7 and on solving we get Eqn. 2.8. 
 

   22

wawpape SS                                                                                           (2.7) 

     222
1 wpapawpape SSS                                                                        (2.8) 

     222
1.. wpapawpapie SSSCF                                                              (2.9) 



In terms modal definition Eqn. 2.8 can be expressed as Eqn. 2.9. Here i modal mass participation 

factor, CF code factor expressed as ZI/2R where Z zone factor, I importance factor and R response 
reduction factor. Eqn. 2.9 actually represents the fixed base amplitude of the bridge pier amplified by 

the DSSI effect represented by term within parenthesis. Thus  
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Here AFp is an amplification factor due to DSSI of the pier and is a dimensionless term. For multi 
degree freedom system Eqn. 2.10 can be expressed (Chowdhury and Dasgupta (2011)) by Eqn. 2.11. 

Here I identity matrix having diagonal terms as 1,  with subscript represents the Eigenvalues of pier 
and well,  i represents the number of modes considered in the analysis. It is thus observed that if we 

are in a position to determine correctly the stiffness and mass matrix of the pier and well vis-à-vis it’s 

Eigenvalues we can easily find out the overall response based on DSSI from Eqn. 2.11. 
 

 
 

Figure 2.2. Equivalent mathematical model for the DSSI 

of the well pier system 

Figure 2.3. Soil pressure on well shaft viewed 

in plan 

 

2.1 Stiffness and Mass Matrix of Bridge Pier 
 

Considering the bridge pier to be fixed at top of well head, the system acts as cantilever beam with a 

mass M lumped at its head (Fig. 2.2a). It can be shown (Sadeghpour & Chowdhury (2008)) that 
stiffness matrix can be expressed as  
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Here     ξcoshμξcosμαξsinhμξsinμξf iiiiii  , i 1.8751, 4.6941, 7.8548, 10.966, … and 

   iiiii coshμcosμsinhμsinμα  , i mode number, E elastic modulus , I moment of inertia of the 

pier. The mass matrix of the pier can be similarly be expressed by Eqn. 2.13 

where, )cosh(cosαsinhsin)(f iiiii   ,  Mass density of pier material, A Cross sectional 

area of pier and H Height of pier. 
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2.2 Stiffness of the Well Shaft 

 

In most of the dynamic analysis the well is assumed to be a rigid cylindrical mass having infinite 
stiffness (Gazzetas et al (2006), Mandal & Jain (2008), Thakkar et al (2002) etc., where only the soil 

stiffness contribute to the dynamic response. This is however an oversimplification of the issue as in 

most of the case the well foundation behaves as a hollow cylindrical shell filled by sand/soil to 
increase its weight. In reality for wells deeply embedded in soil the well foundation behaves as a finite 

beam on elastic foundation, whose displacement function can expressed as  

 

pzpzCpzpzCpzpzCpzpzCx cossinhsinsinhsincoshcoscosh 3210     (2.14) 

 

Where 4 4/ wws IEDkp  , ks subgrade modulus of soil, EwIw flexural stiffness of well. Expressing in 

terms of Puzrevsky’s function (Karnovsky and Lebed 2001), Eqn. 2.14 can be expressed as  

 

       pzVCpzVCpzVCpzVCx 43221100   (2.15) 

 

Where         pzpzpzV coscosh0    (2.16) 

            pzpzpzpzpzV cossinhsincosh211   (2.17) 

     pzpzpzV sinsinh2   (2.18) 

            pzpzpzpzpzV cossinhsincosh213   (2.19) 

 

Puzrevsky’s functions, defined in Eqns. 2.16 to 2.19, have some unique functional properties 

(Chowdhury and Dasgupta, 2008), which will be used for subsequent analysis for derivation of the 

stiffness, damping and mass of the piles. For a solution of the well shaft one may use the model shown 
in Fig. 2.2b. For analysis, the well shaft may be assumed as fixed at base and can undergo unit 

deflection at the head. Considering base of shaft at z = 0, shown in Fig. 2.2b, one may write at 

00,0 0 Cxz  and at 00,0 1 Cxz  

  

This gives,    pzVCpzVCx 3322         (2.20) 

At the well head, i.e. at z = L, x = 1 yielding, gives     13322  pzVCpzVC   (2.21) 

Again at LxLz 1,   which gives,     13322  pzVCpzVC   (2.22) 

 
Using properties of Puzrevsky’s function, one may write Eqn. 2.22 as Eqn. 2.23. Eqn. 2.23 may be 

expressed in matrix form as given in Eqn. 2.24. 
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Performing the above operation gives  
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Where        pLVpLVpLV 31
2

2   which implies 

  2)()( 322 pLpLVpLVC   
and   pLVpLpLVC (2)( 123    (2.26) 

                             
Thus, the displacement for the given boundary condition is then expressed as given in Eqn. 2.27. 

Based on Eqn. 2.27, the generic shape function in dimensionless form considering = pL is given by 

Eqn. 2.28. Where A = C2/ and B = C3/and       31
2

2 VVV  . 
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Differentiating twice, Eqn.  2.28 leads to Eqn. 2.29 and using functional properties mentioned earlier 

one could have Potential energy d of an element of depth dz as shown in Fig. 2.2b is then given 

(Shames and Dym 1995) by Eqn. 2.30. Where Kh lateral dynamic stiffness of soil in kN/m and the 

displacement u may be written as )()( tqzu  . 
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     00 128 rhrGK sx                                                     (2.31) 

 
For a rigid circular disc embedded in soil of depth h the stiffness under earthquake force can be 

expressed as (Wolf-1988) by Eqn. 2.31. Where Kx static foundation stiffness in horizontal direction in 

kN/m, Gs dynamic shear modulus of soil, r0 radius of  foundation, h depth of embedment of the 

foundation and  Poisson’s ratio. Ignoring the first term within bracket in Eqn. 2.31 which contributes 

to base resistance and substituting the same in Eqn. 2.30, for a cylindrical element of depth dz 

embedded in soil the potential energy  for a well of length L may be expressed as Eqn. 2.32. 
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Considering )()(),( tqztzu   it can be shown (Hurty & Rubenstein 1967) that 
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Here the shape function z) is expressed by Eqn.2.28. For the fundamental mode stiffness of the pile 
is given by Eqn. 2.34. Expansion of Eqn. 2.34 finally gives Eqn. 2.35. 
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Now considering Lz / ,  L.d=dz and as z0 , 0  and as zL , 1 , when Eqn. 2.35 can 

be expressed in natural co-ordinates as  
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I1 and I2 are integral functions that need to be determined numerically. However, prior to that 

relationship between dynamic subgrade modulus ks and Wolf’s parameter as shown in Eqn. 2.36 needs 

to be established. Let us assume a circular shaft of outer diameter D=2r and wall thickness t as shown 
in Fig. 2.3. Observing Eqn. 2.37 it is seen that the first term represents the structural stiffness of well 

and the second term expresses the contributing soil stiffness. Thus in terms of ks the stiffness of the soil 

over a segmental area ds × L of the well shaft can be expressed as  

 

2... ILdskk ssoil                                                                (2.39) 

 

Here drds . . This gives total soil stiffness about the shaft by Eqn. 2.40.  Equating Eqn. 2.40 to 

second term of 2.37, we get given by Eqn. 2.41. Based on as mentioned in Eqn. 2.41 and dynamic 
modulus of soil Gs Eqn. 2.37 can be finally expressed by Eqn. 2.42. 
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Table 2.1. Stiffness and Integral coefficient for mass and damping of well foundation 


 

2 2.25 2.5 2.75 3 3.25 3.5 

12
 

0.351 0.387 0.409 0.407 0.372 0.290 0.149 

I2 0.184 0.242 0.304 0.366 0.422 0.464 0.478 

 

Here 2112 II   is well shaft stiffness coefficient. For a well foundation which is usually massive 

L/r is normally less than 20 and E/Gs varying from 1000 to 10,000 (the usual range when wells will be 

deployed), the value of  usually varies from 2.2 to 3.5. Thus considering  varying from 2.0 to 3.5, 

the values of 12 , I2 are furnished in Table 2.1 for ready reference. 

 

2.3 Calculation of Mass and Damping 

 
The well foundation’s mass consists of two parts, i) the self-weight and ii) the lumped mass as its head 

as shown in Fig. 2.2b. The contribution of this can be expressed as (Meirovitch, 2001) Eqn. 2.43, 

where mx is mass per unit length. For the present case Eqn. 2.43 can be expressed as Eqn. 2.44. Here 

w and Aw unit weight of and cross sectional area of well. Eqn. 2.44 in natural co-ordinates can be 

expressed by Eqn. 2.45.  
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Here I2 is the integral function explained in Eqn. 2.38. It may be noted that though here the derivation 

of stiffness and mass of the well foundation is for the fundamental mode but would still have a multi-

degree characteristics as that of the pier as the second term in Eqn. 2.45 will keep varying with each 

mode of the pier. The value of (M+mp) is actually represented by Eqn. 2.13 where though the stiffness 

matrix is diagonal (considering they are derived from Eigenvector basis when i.j=0), the mass matrix 
is non-diagonal but symmetric. To extract the uncoupled modal contribution of this mass on well we 

as first step find out the fixed base Eigenvalues from the expression [Kp][]=[M][]. It is apparent 

that the  matrix is diagonal. Considering the [Kp] matrix is also diagonal in this case a diagonal mass 
matrix contributing to each mode can be obtained as  
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Eqn. 2.45 based on above can now be expressed for each mode as   2
2 )1( xiwwwi MIgLAM  , 

here i = 1,2,3 the mode numbers. Damping of well foundation embedded in soil medium will consist 
of two parts: material and radiation damping. Material damping of soil is also a part of the vibrating 

system, however, it has been found that for translational motion this effect is insignificant and may be 

ignored. As a first step for calculating the total damping one may ignore material damping for the time 

being. For a rigid circular disc embedded in soil for a depth h Wolf (1988) has shown that radiation 
damping may be expressed as given in Eqn. 2.47.  

 

  00 57.068.0 rhVKrc sxx                                     (2.47) 

 

Here, Kx lateral stiffness of the embedded disc; Vs shear wave velocity of the soil. Thus for an 

infinitesimally thin circular disc of thickness dz Eqn. 2.47 can be expressed as Eqn. 2.48 and 

considering Eqn. 2.48 it has been shown by Chowdhury & Dasgupta (2010) that the damping ratio for 

the well shaft can be finally expressed as by Eqn. 2.49. In Eqn. 2.49 n is the natural frequency of the 

well shaft ( )/( xiw MK ) and I2 are the integral functions furnished in Table 2.1. To Eqn. 2.49 now, a 

suitable material damping ratio for the well material ( m ), may be added to arrive at total damping 

ratio of the system. 
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2.4 Moment and Shear of Pier and Well Considering DSSI 
 

For the pier based on the operation [Kp][]=[M][] based on Eqns. 2.12 & 2.13, let the Eigenvalues 

and vectors be represented by    iiiip ,,
   and    jiiip ,,

   where i = j = 1, 2, 3 and pp
2
, the 

square of natural frequency of the pier. Similarly for the well let the fixed base Eigenvalues 

be wiwwi MK , where wiwwi MK . For each of these natural frequencies (p and w) we can 

find out the corresponding values Sap/g and Saw/g from code and putting these expressions in Eqn. 2.11 
we can find out the amplification factor AFpi due to DSSI for each mode of the pier due to the well 

foundation. Based on modal analysis the amplitude of vibration for the pier can then be expressed as  
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Here i modal mass participation factor. Thus displacement, bending moment and shear force are 
expressed as (Meirovitch, 2001) 
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The SRSS values for first three modes are expressed as  
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For the well foundation the displacement as elaborated earlier is expressed as given in Eqn. 2.56. 

Where C2 and C3 are integration constants and V2(z/L) and V3(z/L) are Puzrevsky’s function as 
explained earlier. Now imposing the boundary conditions a) At z=L EId

2
x/dz

2
=Mps and b) at z=L 

EId
3
x/dz

3
=Vps , after some simple algebraic manipulation we get Eqn. 2.57.  
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Where   )()()( 31
2

0  VVV   

 

Now using the properties of Puzrevsky’s function as defined earlier and double differentiating x we 
have Mw and Vw given by Eqns. 2.58 and 2.59 respectively. These equations give the bending moment 

and shear force for the complete well foundation along its depth due to inertial interaction with the 

superstructure including effect of DSSI. 
 

        LzVCLzVCLEIdzxdEIM ww  1302
2222 2                            (2.58) 

Similarly,         LzVCLzVCLEIdzxdEIV ww  0332
3333 22          (2.59) 

 

2.5 Effect of Scour 

 
In many cases due to flow of water a portion of well top loses its grip due to erosion, when the well 

become partly embedded. In this case let the depth of well be L and depth of embedment be L1=L 

where 0<<1. In this case the stiffness expression vide Eqn. 2.36 gets modified to Eqn. 2.60 

where  4 44 ]2/[4 wwse IELG   . Subscript e represents the embedded depth. Rest of the steps 

remains same as explained earlier. 

             





0

2

32

1

0

2

110
34

28)(4 dBVAVLGdVCAVLIEK eeseewwew
      (2.60) 

 

2.6 Kinematical Interaction with Ground 

 
What we have discussed till now is the inertial interaction of the well with superstructure load 



incorporated in the analysis as M + mp. Other than this, free field motion of the ground will also pull 

the well along with it. Especially deeply embedded wells will move along with ground motion 

following the same deformation geometry of the ground. The free field time period of the ground 

referring to Fig. 1.1, can be expressed as   sDn VnHT 124   where HD depth of soil to the bedrock, 

Vs Shear wave velocity of the soil, n the mode number. Let San/g be spectral acceleration 

corresponding to time period Tn. The ground displacement ugn can be expressed as Eqn. 2.61, which 

further can be simplified and expressed as Eqn. 2.62.  

 

    DnanFngn HznTSCu 2)12(cos4 22
                                           (2.61) 

        DDsanFngn HznGnHgSCu 2)12(cos124
222

                    (2.62) 

 

Here s weight density of the soil, G dynamic shear modulus of soil. Considering  
 

  zgn MdzudEI 22      DwwansFnz HznGIEgSCM 2)12(cos    (2.63) 

and                DDwwansFnz HznHznGIEgSCV 2)12(sin2)12(          (2.64) 

 

Here z varies from 0 to L(the depth of well) and n is modal participation factor and for first three 

modes, expressed as )2(8  , )32(8   and )52(8  . SRSS values of moments and shears 

obtained using Eqns. 2.63 and 2.64 now need to be added to Eqn. 2.55 to get the complete response of 

the well under seismic load. 

 
 

3. RESULTS AND DISCUSSION 

 

Basic Data of Well Foundation: Bridge Pier Height (Hp) 12m, Diameter 2m, Mass transmitted to the 
top bridge from the bridge deck (M) 175500kg, Mod. of Elasticity of Concrete (Ep) 2.55×10

7
 kN/m

2
 

Well Foundation Height (L) 25.5m, Diameter (D) 5.5m, Thickness of well 800mm, Thickness of well 

cap 1.8m, density of fill material 1957 kg/m
3
 Soil Parameters Dynamic Shear Modulus (Gs) 1.32×10

5
 

kN/m
2
, mass density 1957 kg/m

3
, Poisson’s ratio (ν) 0.3 Seismic Condition According to Indian 

Standard IS 1893 Part 1, Seismic Zone V, Soil Type Soft, Importance factor (I) 1.0, Response 

reduction factor (R) 3.0  
 

Salient analytical parameters obtained from the analysis including bending moment profile and shear 

force profile in pier and well, starting from top of pier are as mentioned hereafter.  

 

Modal Parameters and Amplification Factors 
 Mode 

1 2 3 
Pier Time Period 0.47 0.035 0.011 

Damping 5% 5% 5% 
Amplification 1.03 3.5 32.85 
Modal Mass 
Participation 

-0.38 0.44 0.29 

Well Time Period 0.11 0.06 0.06 
Damping 20% 20% 20% 

 

  

 

Figure 3.2. Bending moment and Shear force profile along pier and well. 

 



4. CONCLUSION 

 

A comprehensive analytical model is proposed herein that takes into consideration the DSSI effect of 

the soil and well on the pier supporting the superstructure. It also takes into account the elastic 
deformation of the well that is usually considered as a rigid cylindrical block in the present state of the 

art. It is observed that DSSI amplifies the fixed based response of the pier and this is more profound as 

the soil stiffness reduces. The higher modes though have a higher amplification than the fundamental 
mode their effect is not high as reduced modal mass participation brings down the amplification effect 

significantly. It is the fundamental mode and its corresponding amplification, which remains most 

critical. Considering the procedure is analytical in nature no sophisticated software is required. An 
Excel or a MathCAD sheet is sufficient to arrive at an accurate result. 
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