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SUMMARY: 

This paper presents a new equivalent model, consisting of a single degree of freedom oscillator supported on an 

elastic soil, selected to approximate the response of a multi-story soil-structure system in the vicinity of each 

system mode.  The model is based on the modal properties of the structure on a fixed-base and on the foundation 

impedance functions. It is shown that the effects of the lower fixed-base modes can be accounted for by 

increasing the stiffness and damping of the foundation while the effects of the higher fixed-base modes can be 

approximated by increasing the mass of the foundation. The new effective model provides considerable insight 

into the effects of SSI on the dynamic response of structures and can be used to obtain approximate values of the 

system natural frequencies, mode shapes, damping ratios and participation factors of an N-story structure by 

solving N reduced eigen-value problems of dimension 3. 
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1. INTRODUCTION 

   

In his pioneering study of the dynamic building-foundation interaction effects, Parmelee (1967) 

considered the response of the now classical model of a one-story structure resting on a rigid 

foundation supported on an elastic soil. The model had three degrees of freedom corresponding to 

horizontal translation of the top mass, horizontal translation of the base mass and rocking of the base. 

This model was later studied in much detail by Bielak (1971), Jennings and Bielak (1973) and 

Veletsos and Meek (1974). To extend the applicability of the 3-DOF model to the study of the 

response of multi-story structures (such as that shown in Fig. 1.1), Parmelee (1967) proposed to focus 

on the response in the vicinity of each fixed-base mode by replacing the top mass of the 3-DOF model 

by an appropriate modal mass, and by selecting an appropriate height and foundation mass for the 

model which would account for the inertia of the remaining modes. In Parmelee’s work, the stiffness 

of the super-structure was selected to correspond to the modal stiffness, and the stiffness and damping 

characteristics of the soil were left unchanged by the effects of the remaining modes. 

 

In this paper, we revisit the problem of deriving equivalent 3-DOF models consisting of a single 

degree of freedom oscillator resting on a rigid foundation supported on an elastic soil to approximately 

represent the response in the vicinity of each mode of a multi-story structure when the effects of soil-

structure interaction are included. Conceptually, the process is illustrated in Figs. 1.2a and 1.2b. As 

first shown by Tajimi (1967), the multi-story model illustrated in Fig. 1.1 can be replaced by the 

equivalent model shown in Fig. 1.2a, which consists of N oscillators, attached to the same foundation, 

each oscillator being characterized by the corresponding modal quantities of the structure on a fixed-

base: natural frequency ωi, damping ratio ξi, effective modal mass Mi and height Hi. The model in Fig. 

1.2b consists of several separate single-degree-of-freedom oscillators, each one supported by a 

foundation on an elastic soil. The mass, stiffness and damping of the foundation are modified to 

account for the effects of the remaining modes. The model considers explicitly only one fixed-base 

mode at a time to describe the structural response, while the remaining fixed-base modes 



  
 

Figure 1.1 Shear-type model for in-plane coupled horizontal-rocking vibration 

 

are accounted for by modifying the properties of the foundation. It is shown that the effects of the 

lower fixed-base modes can be approximated by increasing the stiffness and damping of the 

foundation while the effects of the higher fixed-base modes can be approximated by increasing the 

mass of the foundation. The equivalent model can be used to obtain approximate values of the system 

modal quantities of an N-story structure on an elastic soil by solving N reduced eigenvalue problems 

of dimension 3, instead of one eigenvalue problem of the complete interacting system. Although the  

 

 
 

Figure 1.2. Equivalent models of the interacting system: (a) obtained by expressing the relative displacements of 

the superstructure in terms of fixed-base modes, and (b) obtained by using the approximate 1-DOF systems. 

 

proposed model provides an alternative way to obtain the modal quantities that appear in the 

approximate classical normal mode approach for soil-structure interaction problems [Roesset et al. 

(1973), Tsai (1974), Novak (1974), Rainer (1975), Bielak (1975, 1976), Clough and Mojtahedi (1976), 



Beredugo (1976), Warburton and Soni (1977), Vaidya et al (1986)], its main characteristic is that it 

offers considerable physical insight into the nature of the soil-structure interaction effects.  

 

 

2. STATEMENT OF THE PROBLEM AND BASIC INTERACTION EQUATIONS 

 

Consider the problem of in-plane coupled horizontal-rocking vibrations of a linear elastic structure on 

a rigid foundation supported on a viscoelastic soil, excited by elastic waves propagating into the soil 

medium. The superstructure is discretized in a set of N nodes interconnected by elastic members; the 

soil is represented by a continuous, three-dimensional half-space. Referring to the model shown in Fig. 

1.1, in which a shear-type behavior of the superstructure is assumed, the deformed configuration of the 

system can be described in terms of the 1N ×  vector { }U
 
of relative displacements of the nodes with 

respect to a frame of reference attached to the moving rigid foundation, and of the 2 1×  vector 

{ } ( ),
T

s s s
U U θ=  expressing the relative motion of the foundation with respect to the input motion. 

With these definitions and for harmonic excitation, the motion of the superstructure and of the 

foundation is governed by the following system of equations: 
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where [ ] [ ] [ ], ,b b bM C K  are the mass, damping and stiffness matrix for the superstructure on a fixed-

base, [ ]o
M  is the mass matrix of the foundation and [ ] [ ]( ) ( )

s s
K i Cω ω ω+  represents the foundation 

impedance matrix. In Eq. (2.1), the harmonic time dependent term i t
e

ω  is omitted for clearness, and the 

displacement vectors { }U  and { }s
U  are intended to be frequency-dependent. The total displacements 

of the superstructure { }tU  and of the foundation { }0U are given by: 

 

 { } [ ]{ } { } { } { } { }*

0 0 0,       t sU U U U U Uα= + = +  (2.2a, b) 

 

where [ ] { } { }1 , hα =     is the 2N ×  rigid-displacement influence matrix in which { }1  is a column of 

ones and { }h  represents the nodal heights with respect to the bottom of the foundation. The vector 

{ }*

0U  is the foundation input motion, assumed known from the solution of the scattering problem, 

[e.g., Luco (1980), Luco and Wong (1987)]. Equation (2.1) represents a generalization of an equation 

first formulated by Parmelee et al. (1969) for the case of a surface foundation and no scattering.  

 

 

3. EQUIVALENT SINGLE DEGREE OF FREEDOM MODEL 

 

3.1. Analytical formulation 

 

To start the derivation of the equivalent models, it is assumed that the superstructure, when attached to 

a fixed base, possesses classical normal modes. Next, the relative displacement vector of the 

superstructure { }U  is expressed in terms of the modal coordinates { }η  through the standard 

transformation 
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where [ ]Φ  is the fixed-base modal matrix. The fixed-base eigenvectors satisfy the eigen-value 



problem 
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in which 
j

ω are the fixed-base natural frequencies of the superstructure. Introducing the transformation 

(3.1) into Eq. (2.1) leads to  
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in which [ ] [ ]rM M= , [ ] [ ]rD ξ= , and [ ] [ ]rωΩ =  are diagonal matrices of fixed-base modal masses, 

damping ratios, and natural frequencies of the superstructure, respectively, and [ ] [ ] [ ][ ]
T

b
Mβ α= Φ  is 

the matrix of participation factors of the superstructure on a fixed-base. 

 

For harmonic time-dependence, the upper part of Eq. (3.3) leads to 
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where ( ) ( ) ( )
2

1 2 1 2
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B i iξ ω ω ω ω ξ ω ω =  +  − +     is a dynamic amplification coefficient and 

{ } { } [ ] { } { }( )1 ,
T T

i i b
M hβ φ= . 

 

The lower portion of Eq. (3.3) corresponds to the equations of motion of the foundation, under the 

action of the external excitation and of the forces { }
sf

F  exerted by the superstructure: 
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where the right-hand-side of Eq. (3.5) corresponds to the force { }
sf

F . Making use of Eqs. (3.1) and 

(3.4), and of the relation { }{ } [ ] [ ][ ]1

1

N
TT

r r r b

r

M Mβ β α α−

=

=∑ , the force { }
sf

F  can be expressed, in the 

case of harmonic time-dependence, as: 
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where the matrix [ ] { }{ }1 T

i i i i
m M β β−=  can be written in the form 

 

 [ ] 2

1
ˆ i

i i

i i

H
m M

H H

 
=  

 
 (3.7) 

 

where { } [ ]{ }( )
2

1ˆ 1
T

i i i bM M Mφ−=  and { } [ ]{ } { } [ ]{ }1
T T

i i b i bH M h Mφ φ=  are effective modal masses 

and modal heights ( )1,i N= , respectively. 

 

Now, we focus on frequencies in the vicinity of the ith fixed-base natural frequency. For frequencies 

ω  very different from
i

ω , the coefficient 
i

B  can be approximated by: 
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Separating in Eq. (3.6) the contribution from the ith mode and introducing the approximation given by 

Eq. (3.8) leads to 
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At this point, it is convenient to introduce the normalization of the fixed-base modes given by 

 

 { } [ ]{ } { } [ ]{ }1
T T

i i b i i bM M Mφ φ φ= =  (3.10) 

 

which leads to the result ˆ
i iM M= .  Now, using only the equation related to 

i
η  on the upper part of 

Eq. (3.3) and combining Eqs. (3.5) and (3.9) for the bottom part, leads to the equations of motion for 

the equivalent model involving the three degrees of freedom ,   and i s sUη θ : 
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in which the equivalent mass, damping and stiffness matrices of the foundation are: 
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The equivalent external forces on the foundation are obtained by pre-multiplying the foundation input 

motion by: 
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The solution of Eq. (3.11) gives the response of the system in proximity of the ith natural frequency. A 

number of different reduced systems, equal to the number of structural degrees of freedom, would 

need to be solved, in order to obtain the complete solution over the full frequency range.  

 

3.2. Physical interpretation 

 

As already mentioned, the significance of the equivalent model presented here relates more to the 

physical insight that it provides, than to any significant numerical advantages. Analysis of Eq. (3.11) 

reveals that the equivalent model can indeed be interpreted as a single-degree of freedom oscillator, 

supported on an elastic soil. The first degree of freedom ηi describes the relative motion of the 

superstructure, in terms of the amplitude of the ith fixed-base mode shape. The mass ( )ˆ
iM , stiffness 

( )2 ˆ
i iMω , height ( )iH , and damping ratio ( )iξ  of the superstructure correspond to the respective 

modal quantities for the ith fixed-base mode. The last two degrees of freedom correspond to the 

translation and rocking of an equivalent rigid foundation. The mass, damping and stiffness matrices of 

the equivalent foundation are modified to account for the effects of the remaining fixed-base modes 



( )1j ≠  of the superstructure. The fixed-base modes with frequencies ωj > ωi (higher modes) are 

accounted for by increasing the mass (Eq. 3.12a) of the foundation. The fixed-base modes with 

frequencies ωj < ωi (lower modes) are accounted for by increasing the stiffness (Eq. 3.12c) and the 

damping (Eq. 3.12b) of the spring and dashpot representing the soil impedances.   

 

It is interesting to point out that in the equivalent model of Parmelee (1967) for the vicinity of a 

particular mode (say, the ith mode), all remaining modes (higher and lower) contribute to the 

additional foundation mass ( [ ]
1

N

j

j
j i

m m
=
≠

 ∆ =  ∑ ), while in the present equivalent model only the higher 

modes contribute to the additional foundation mass (
1

N

j

j i

m
= +

  ∑  ). The two results are equivalent for the 

fundamental mode but they are significantly different for the higher modes. Also, Parmelee (1967) did 

not consider any additional soil stiffness or damping associated with the lower modes of the 

superstructure. The results obtained here for the additional damping are consistent with the numerical 

results of Bielak (1975, 1976) which show that the structural contribution to the system damping ratio 

for a particular mode stems primarily from the lower fixed-base modes.  

 

A schematic representation of the equivalent 1-DOF model for the simpler case of vertical vibrations 

is shown in Fig. 3.1. The single story superstructure is represented by the modal mass, stiffness and 

damping ratio for the ith fixed-base mode; the effects of the higher fixed-base modes are represented 

as an additional mass, rigidly connected to the foundation, and the effects of the lower fixed-base 

modes are represented as an additional spring and dashpot connected to the foundation. 

 

 
 

Figure 3.1 Schematic representation of the equivalent single degree of freedom model for vertical vibrations 

 

 

4. NUMERICAL RESULTS 

 

4.1. Description of the test model 

To provide some numerical results, a test structure corresponding to a nine-story building, supported 

on a rigid foundation, partially embedded in a homogeneous, linear elastic half-space is considered. 

Table 1 lists the data for the coordinates, masses, stiffnesses of the different floors and the natural 

frequencies of the structure on a fixed-base. The superstructure is supported on a foundation which is 

represented by an equivalent rigid, circular base mat, with radius 11a m=  and height 
0

5.5h m= ; the 

base of the foundation is 5.5m  below the ground level, thus the embedment ratio is 0.5eh a = . The 

foundation soil has a unit mass ρ  of 31850 Kg m and Poisson’s ratio 1 3ν = . Different values for the 



shear wave velocity ( )m secβ  of the soil are considered. To account for the effects of soil-structure 

interaction, the foundation impedance coefficients provided in Apsel and Luco (1987) are used. 

Structural damping is accounted for by assuming a fixed-base modal damping ratio of 1% for all 

modes. A more detailed description of the test structure is provided in Lanzi (2011).  

 
 Table 4.1. Properties of the 9-story structure and fixed-base natural frequencies 

Floor # Mass Moment of inertia Stiffness Height Mode # F.B. frequency

i mi [10
6
 Kg] Ii [10

6
 Kgm

2
] ki [MN/m] Zi [m] j fj [hz]

9 1.20 67.70 8103 45.70 1 2.16

8 1.20 67.70 8103 41.40 2 6.42

7 1.20 67.70 8103 37.10 3 10.51

6 1.20 67.70 8103 32.80 4 14.31

5 1.20 67.70 8103 28.50 5 17.72

4 1.20 67.70 8103 24.20 6 20.64

3 1.20 67.70 8103 19.90 7 23.00

2 1.20 67.70 8103 15.60 8 24.74

1 1.20 67.70 8103 11.30 9 25.80

G 1.40 90.20 --- 2.75 --- ---  
 

4.2. Contribution of the foundation added mass, added stiffness and added damping 

 

To provide quantitative results as to the added foundation mass, stiffness and damping for different 

modes, the modified matrices for the foundations have been computed for the test nine-story structure. 

Fig. 4.1 shows the added mass and stiffness terms of the matrices 0  and i siM K  for the nine reduced 

eigenvalue problems. The terms relative to the mass are normalized to the fixed-base total mass, total 

moment of masses and total moment of inertia of the superstructure: 
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∆ = ∆ = ∆ =∑ ∑ ∑  (4.1) 

 

The terms relative to the stiffness are normalized to the translational, rotational and coupling stiffness 

of a superstructure fixed at all of the upper nodes (fixed-structure mode). 
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The reason for this normalization of the stiffness is that the motion at high frequencies involves small 

total displacements of the superstructure, which tends to respond like a fixed-superstructure. 

It can be observed that: (i) the equivalent added foundation mass for the first and second modes are 

less than 15% and 6% of the total mass of the superstructure, respectively. The corresponding added 

moment of mass and mass moment of inertia are extremely small. The added foundation mass tends to 

zero for the higher modes; (ii) the lower fixed-base modes contribute to the added foundation stiffness 

and damping. The added translational stiffness increases gradually with the order of the mode 

considered. The added rotational stiffness increases mainly from the first to the second mode and then 

remains almost constant. 

 

The magnitude of the added stiffness of the foundation ,  ,  and HH HM MMK K K∆ ∆ ∆ due to the lower 

fixed-base modes are shown in Fig. 4.2a versus the normalized shear wave velocity of the soil. The 

added stiffnesses are normalized by the corresponding values of the foundation impedances, and only 

the curves relative to mode 2 (added stiffness is due to the fundamental fixed-base mode only) and 



mode 9 (added stiffness is due to all the lower fixed-base modes) are plotted. It can be observed that 

the relative importance of the added foundation stiffness due to the superstructure monotonically 

decreases with increasing shear wave velocity. The added translational and rotational stiffness can be, 

for soft soils, of the same order of the foundation impedances. The added coupling stiffness can be 

seven times larger than the actual foundation coupling impedance, thus increasing significantly the 

effect of coupling in the stiffness matrix of the foundation.  

 

 
 

Figure 4.1 (a) Added mass and (b) added stiffness terms for the equivalent 1-DOF model of the test structure 

 

The added foundation damping terms normalized by the corresponding foundation damping constants 

(imaginary parts of the foundation impedance functions) are shown in Figs. 4.2b. It can be observed 

that the added foundation damping is small as a consequence of the small amount of modal damping 

ratios assumed for the superstructure (1%) compared to the damping due to wave radiation into the 

soil. The increase in the damping term HHC  is almost zero, as a result of the large amount of radiation 

damping for foundation translation. The most significant (but still small) increments correspond to the 

rocking damping. Most of the added damping is associated with the effect of the fundamental mode 

and can be seen in the second and higher modes. 

 

 
 

Figure 4.2 (a) Added stiffness and (b) added damping for modes 2 and 9 versus normalized shear wave velocity 

 

4.3. Validation of the proposed approach by comparison with the steady-state response 

 

To validate the equivalent 3-DOF models, the frequency response of the nine-story test building has 

been calculated using the exact solution [Eq. (2.1)] and the approximate solution calculated by use of 

Eqs. (3.11), (2.2b), (3.4) and (3.1). Figures (4.3a, b) show the amplitude of the frequency response for 

the total displacement at the top of the building for an excitation corresponding to the (a) translational 

and (b) rocking (normalized by the height of the building) components of the foundation input motion 

for soils with shear wave velocities of 180, 360 and 720 m/sec. The results for a particular mode are 

shown in a frequency range which extends until agreement is found with the results for the next mode. 

The results obtained show that the 3-DOF models accurately account for the response in the vicinity of 



each system mode, and fully validate the equivalent models for soils ranging from very stiff to 

relatively soft. It should be mentioned that the calculations reflected in Fig. 4.3 utilize frequency-

dependent impedance functions. 

 

 
 

Figure 4.3 Transfer function of the normalized absolute displacement at the top of the nine-story structure for 

unit translation (a) and unit rotation (b) input motion and three values of soil shear wave velocity β(m/s) 

 

 

5. CONCLUSIONS 

 

A new equivalent model, consisting of a single degree of freedom oscillator supported on an elastic 

soil, selected to approximate the response of a soil-structure system in the vicinity of each system 

mode has been presented.  The model is based on the modal properties of the structure on a fixed-base 

and on the foundation impedance functions. It is shown that the effects of the lower fixed-base modes 

can be accounted for by increasing the stiffness and damping of the foundation while the effects of the 

higher fixed-base modes can be approximated by increasing the mass of the foundation. The new 

equivalent model provides considerable insight into the effects of SSI on the dynamic response of 

structures. 

 

The magnitudes of the additional foundation masses associated with the effect of the higher fixed-base 

modes have been quantified for a nine-story test structure. The added foundation mass decreases 

rapidly with mode number from a maximum, for the first mode, of about 15% of the total mass of the 

superstructure. The added moment of mass and moment of inertia are extremely small. The added 

mass proposed here coincides with that proposed by Parmelee (1967) for the fundamental mode, but is 

significantly smaller than the earlier added mass for the higher modes.  

 

The lower fixed-base modes contribute to the stiffness and the damping of the foundation. The added 

translational stiffness gradually increases with mode order, while the added rotational stiffness 

increases mainly from the first to the second mode. The added translational and rotational stiffness of 

the foundation can be, for soft soils, of the same order of the foundation impedances. The added 

coupling stiffness can be several times larger than the corresponding foundation impedance, thus 

increasing significantly the effect of the translation-rocking coupling in the effective stiffness matrix 

of the foundation. The effects of the lower fixed-base modes in increasing the damping matrix of the 

foundation are less pronounced than those on the stiffness. This is a result of the typically small 

amount of structural modal damping compared to the larger radiation damping in the soil. The 

analytical results obtained here for the additional damping are consistent with the numerical results of 

Bielak (1975, 1976) which show that the structural contribution to the system damping ratio for a 

particular mode stems primarily from the lower fixed-base modes. Finally, the new 3-DOF model has 

been validated by comparison of the local steady-state response with that obtained by exact solution of 



the equation of motion for the complete interacting system.  
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